
Network

Integration Guidelines
Version 1: 05/07/2024

Table of Contents
Table of Contents

Confidentiality disclaimer

Introduction

Understanding Klarna

Power your growth with Klarna

Smart solutions to maximize sales

Before you start

APIs overview

Integration overview

Design your Klarna Solution

Klarna Product Interoperability

How to present Klarna in the checkout

Checking Klarna availability

Checkout structure

Payment �ow

Set up your partner account

Partner account

Step 1: Con�gure account credentials

Step 2: Con�gure Klarna webhooks

Step 3: Account con�guration management

Onboard and manage merchants

Step 1: Determine account structure

Step 2: Onboard merchants

Step 3: Manage your merchant payment products

Enable interoperability of Klarna products

Step 1: Grant access to Klarna’s ecosystem

Step 2: Consume and pass key identi�ers

Step 3: Supplementary shopping data

Processing of Klarna payments

Web ecommerce transaction

More payment use cases

Manage Klarna payment transaction

Read payment transaction

Update Payment Transaction

Capture Payment Transaction

Void payment transaction

Refund payment capture

Refund payment transaction

Re authorize a payment transaction

Pricing and reconciliation

How pricing works

Reconciling Klarna Settlements

Settlement File

Test your integration

Test cases

Management API test cases

Con�dential and proprietary information 2

End-to-end test cases

Ecommerce end-to-end test cases:

Sample shopper data and test triggers

Sample business data

Sample shopper data

Sample payment data

Resources

Klarna integration principles

Klarna ecosystem

Environments

Versioning and deprecation

Availability and latency

Web SDK

Mobile SDK

Security

API Authentication Standards

DDOS Protection

Communication security

Security Protocols and Best Practices

Authentication type by service

Rate limiting

API operation categories

Rate limit enforcement

Handling rate limits

Rate limiting change management

Integration resilience

Idempotency

Tagging

Monitoring and alerting

Error handling

Con�dential and proprietary information 3

Confidentiality disclaimer

This document and the information in it are provided for the sole purpose of exploring potential
business opportunities between you and Klarna. The document is the property of Klarna and is
strictly con�dential. The document contains con�dential information that is intended solely for the
person to whom it is transmitted. The disclosure of this document shall in no way imply any transfer
or grant of rights to Klarna's con�dential information, and Klarna retains all of its rights therein.

Upon receipt of this documentation, the recipient acknowledges and agrees that: (i) this
documentation is not intended to be distributed, and if distributed inadvertently, will be returned to
Klarna as soon as possible; (ii) the recipient will not copy, reproduce, divulge, distribute, or disclose
this documentation, in whole or in part, to any third parties without the express written consent of
Klarna; and (iii) all of the information contained within this documentation will be treated as
con�dential and will be protected by recipient using at least the same degree of care that recipient
uses to protect its own proprietary and con�dential information of similar importance.

Con�dential and proprietary information 4

Introduction

Understanding Klarna
Klarna is a global leading AI-powered payments network and �nancial assistant that smooths
commerce by offering fairer, more sustainable, innovative solutions. We’re committed to providing a
seamless and secure shopping experience that help our shoppers:

Power your growthwith Klarna
We've partnered with global payment platforms to make Klarna's �exible and convenient payment
option the default checkout choice for shoppers worldwide. Each month, millions of shoppers opt for
Klarna for their transactions, both online and in physical stores.

Merchants grow their business with our �exible payment option and smart shopping solutions that
enable shoppers to easily and securely pay when and how they want everywhere - online and
in-store, powered by the Klarna App. Klarna supports all shopping scenarios from high value
transactions to everyday purchases. Merchants using Klarna see:

● 41% Increase in average transaction value.
● 30% Increase in conversion.
● 45%Higher purchase frequency than average shoppers.

Con�dential and proprietary information 5

Klarna elevates the shopping journey from inspiration and intent to checkout and retention. We
prioritize streamlining payments for merchants with a simpli�ed checkout process, conversion
optimization, and shoppers identi�cation.

Our dynamic expertise ensures seamless interoperability between products within the Klarna
ecosystem, delivering a smooth and consistent shopper experience across all integration patterns.

The Klarna Product ecosystem: We elevate the shopping journey from start to end.

Smart solutions tomaximize sales
Our offering includes On-site messaging, Klarna Express checkout, and Sign in with Klarna alongside
marketing services such as af�liation and price comparison search. These features are exclusively
designed to drive growth and boost conversion rates and enhance the shopper experience.
Partnering with us ensures seamless interoperability, mirroring direct integration with Klarna for a
cohesive experience.

Klarna Express checkout
Offer a 6x faster check-out
process that will lower the
threshold for shoppers to
complete a purchase.

On-site messaging
Add personalized messaging
throughout the shopper journey
for higher conversion rates and
increased spend.

Sign in with Klarna
Accelerate the registration,
sign-in, and checkout processes
with a one-click experience,
increasing account registrations,
and improving conversion rates.

Con�dential and proprietary information 6

Before you start
Klarna offers a global and interoperable platform designed to support merchant management,
transaction processing, post-purchase operations, and conversion rate optimization. This platform is
powered by the Web SDK, an extensive JavaScript SDK, along with the Management and Partner
Product APIs. These tools ensure seamless integration, enabling you as a Klarna partner to maximize
the bene�ts of all available Klarna features.

Klarna aims to partner with you as an Acquiring Partner integrating partner and unlock our mutual
potential to enable best in class shopping experiences that allow merchants to maximize results as
well as offer a unique customer journey for shoppers.

As an Acquiring Partner integrating partner, understanding our solution principles and committing to
them is essential before proceeding with integration and offering Klarna services to your merchants.
This understanding ensures that you can provide a best-in-class experience to your merchants,
streamlining the integration and the adoption of future enhancements.

● Global availability
○ Klarna solutions are global by design ensuring that partners can seamlessly integrate

and enable all Klarna’s services on a worldwide scale right from the start. As Klarna is
on a rapid expansion path, with plans to reach 200 markets in the future, it's crucial
for partners to adopt a global perspective in both technical and commercial aspects
of integration. This approach eliminates the need for additional adjustments when
Klarna enters new markets or expands services in existing ones. Embracing a global
framework from the outset not only simpli�es integration but also positions you as a
Klarna partner to effortlessly grow alongside with our continuous expansion.

● Effortless setup
○ Klarna solutions are available to any merchant and can be seamlessly integrated into

any system where traditional card payments are accepted, without the need for extra
data. Klarna offers all the functionalities of card payments and additional �exibility
for shoppers while providing a streamlined payment experience. By adding Klarna
services into your offering, you're not merely adding another way to pay; you're

Con�dential and proprietary information 7

enabling merchants to enrich the shopping journey for shoppers and keeping it
simple and ef�cient.

● Feature parity
○ Merchants should be able to effortlessly activate all Klarna services without facing

extra technical complexities or functional limitations, no matter the integration
pattern. By aligning your integration with Klarna's best practices and supporting
Klarna’s Web SDK, mobile SDK, as well as enablement of Klarna services for all
channels offered via your platform and payments use cases offered such as in-store
payments, subscriptions will enable you to easily expand your business and offer
additional value to your merchants.

● Interoperability
○ Klarna solutions strive to create intuitive and consistent shopper experiences

independently of how they are integrated (e.g. API, platforms, etc.). Klarna's products
will be enabled to connect seamlessly with each other and with partner platforms,
ensuring all merchants, regardless of their technical setup, can fully use these
integrations to enrich shopper experiences by utilizing Klarna’s full product offering

● Access to Klarna Portal
○ A key part of ensuring feature parity and interoperability is having your merchants

access the Klarna portal, through which merchants can enable and con�gure growth
and marketing services. The portal can also serve features like Klarna dispute
handling, if you choose not to integrate such into your own portal/dashboard.

● Klarna as a unified payment offering
○ Merchants should offer Klarna as a single payment method, giving shoppers access

to various payment options. The goal is to provide shoppers with maximum freedom
and �exibility in how they want to pay using Klarna. The speci�c payment options
from Klarna are curated based on local rules and regulations and are determined by
the shopper at the time of purchase.

● Shared intelligence for risk management
○ Our common goal is to protect merchants and shoppers from fraud by leveraging

shared intelligence. Through collaboration with our partners, we exchange data and
insights to improve the accuracy of our risk analysis and enhance our collective
efforts in risk management.

APIs overview
Global and instant onboarding, full lifecyclemanagement of accounts

● Create, read, update and onboard merchant accounts.
● Fetch and verify price plans at any time.
● Integrated, automated fraud management.
● Flexible settlements to simplify reconciliation process
● Restricted to distribution or acquiring partners.

Unified global service to simplify enablement of Klarna offering
● Single, global authentication for all features.
● One API to access end-to-end services and features to process Klarna payments.
● Standardized data point de�nitions.
● Available for distribution partners and merchants, interoperable.

Con�dential and proprietary information 8

Integration overview
These guidelines are divided into seven different sections covering the complete integration journey.
Below you will �nd quick links to each of these sections.

1. Designing your Klarna Solution
a. Building Shopper-centric solution
b. Presenting Klarna

2. Get your partner account setup and ready to start your integration:
a. Obtain API Credentials: Get your API credentials from Klarna.
b. Con�gure Webhooks: Set up webhooks for real-time updates.
c. Manage Account Con�guration: Adjust your account settings.

3. Discover Management API.
a. Create Merchant Accounts: Set up your �rst merchant account.
b. Update and Maintain Merchant Accounts: Integrate additional requests for account

management.
c. Enable Access to Klarna Merchant Portal: Optimize conversion rates for your

merchants.
4. Enabling interoperability of Klarna products

a. Importance: Understand why interoperability is crucial.
i. Klarna Shopper Journey: Learn how to enhance the shopper experience.

b. How to Do It: Steps to achieve interoperability.
i. Interoperability: Ensure seamless integration of Klarna products.
ii. Klarna Portal (Deep-links): Utilize deep-links for ef�cient navigation.

5. Discover Partner Product API: Explore the Partner Product API.
a. Designing Your Klarna Solution
b. Follow Best Practices: Ensure the UX is optimized for conversion.
c. Identify Integration Approach: Choose the ideal integration method.

i. Create a Payment Request: Initiate a payment request.
ii. Monitor Payment Status: Keep track of payment requests.
iii. Con�rm Payment: Verify the payment request.

d. Explore Payment Scenarios: Address speci�c payment requirements.
e. Manage Authorizations: Implement requests for captures, voids, refunds, and

updates.
6. Enable Post Purchase Operations: Facilitate seamless post-purchase activities.

a. Handle Disputes: Implement disputes handling.
b. Create Settlement Reports: Allow for settlements reporting.

7. Finalize your Klarna Integration
a. Validate Your Integration: Ensure your integration meets all requirements.
b. Create Public Documentation: Provide documentation for your merchants.

8. Klarna API Design Principles: Adhere to Klarna's API design standards.

Con�dential and proprietary information 9

Design your Klarna Solution
Designing your Klarna solution extends beyond just adding components. It’s about forming a
partnership to elevate the overall shopper experience, grow shopper satisfaction and improve the
performance of every step of the purchase journey.

In the following sections you will �nd details on the main areas of focus to keep in mind when
designing your solution for merchants.

The Klarna Product ecosystem: One dynamic experience, seamless Interoperability between products across integration
patterns.

Klarna Product Interoperability
In today's �ercely competitive market, it's crucial that every shopper who lands on your merchant's
website makes a purchase to ensure continued success. To help merchants achieve this, we’ve
developed a product framework that guarantees seamless interoperability, allowing all systems
involved in merchant integrations to work together effortlessly. Not only does this streamline the
merchant’s operations, but it also enhances the overall shopping journey, ensuring a best-in-class
shopping experience, and global consistency.

Merchants have full access to the complete suite of Klarna products and services within this
framework. By enabling the recommended integration �ow outlined later in this document,
merchants can:

● Flexibility: Tailor the complete range of Klarna services to their unique needs.

● Better Conversion Rates: Leverage conversion-boosting Klarna features to reduce shopper
drop-offs and increase the likelihood of successful purchases, regardless of the integration
approach for processing payments.

Con�dential and proprietary information 10

● Higher Shopper Satisfaction: Provide a reliable and familiar payment experience that
enhances trust and satisfaction, encouraging shopper retention.

Solutions accessible via interoperability
Sign in with Klarna, On-site messagingand Express Checkout are Klarna’s conversion booster solutions.
These were designed to enhance the shopper experience at different touchpoints, before and during
the purchase. Each feature targets a speci�c aspect of the shopping journey, and they deliver
maximum impact when utilized together.

Tools to help merchants achieve maximum growth.

Sign in with Klarna
Merchants are constantly aiming to enhance the purchase experience for their shoppers. By
leveraging Klarna’s community of over 150M shoppers, this social login feature lets shoppers quickly

Con�dential and proprietary information 11

and safely sign up on the merchant website by using their Klarna account information and allows
merchants to identify their shoppers early in the shopping journey.

Easy registration, sign-in and checkout. Plus unrivaled access to detailed shopper data.

When a shopper registers with Klarna in an ecommerce site, the merchant gains additional
intelligence that will enable the enhancement of the shopping journey, understanding the shopper’s
needs and delivering a personalized experience.

On-site messaging
Klarna’s dynamic placement solution, On-site messaging, helps your merchants business grow by
converting website visitors into shoppers by informing early in the shopping journey about �exible
payment methods available.

On-site messaging touchpoints: By adding On-site messaging to the shopping journey, merchants can inform shoppers about
promotions, available payment methods and a payment calculator.

The look and feel for these dynamic placements is customizable and merchants are in control to
choose their preferred font, text style, size and logos allowing them to match the look and feel of
their overall brand and website.

Con�dential and proprietary information 12

Express checkout
Klarna Express checkout allows your
merchants to uplift conversion and
minimize cart abandonment by pre-�lling
the shopper's at the checkout moment
and providing a faster and more enjoyable
shopping experience.

Merchants are able to place Klarna
Express checkout where shoppers are
most likely to complete a purchase and
display it early in the shopping journey to
provide the option to skip ahead when
they’re ready to purchase.

More Information on Interoperability is available in Enable interoperability of Klarna products.

Con�dential and proprietary information 13

How to present Klarna in the checkout

Checking Klarna availability
To enhance global scalability, Klarna enables Partners to verify the suitability of Klarna payments
during checkout before displaying our branding. This approach ensures that as Klarna expands into
new markets, you only need to update your merchant con�gurations within Klarna, simplifying the
process of scaling up and ensuring a truly global partnership. This setup also facilitates a seamless
merchant experience globally.

The core principle of integrating Klarna in the checkout process is the dynamic display of content,
which adjusts based on this initial veri�cation for scalable results. To support this dynamic capability,
the Klarna Messaging API package is designed to let you dynamically display accurate payment
descriptors based on your account settings and transaction speci�cs. This tool provides crucial
information and visuals, helping you effectively showcase Klana-branded elements to enhance
shopper conversion rates.

Checkout structure
Get familiar with the different components of
the checkout page and how to display Klarna
in the merchant payment selector. There are
three main items to consider:

● Payment descriptor
● Payment subheader
● Klarna badge

These may vary depending on the language
and market. Klarna will provide these
dynamically as part of the API response.

Two options are available for presenting Klarna in checkout, depending on your capability to
dynamically handle the presentation of Klarna in checkout

Con�dential and proprietary information 14

Option 1: Dynamic (recommended)
For integrations capable of dynamically providing payment methods based on Klarna's response, the
recommended approach that allows optimization of conversion is to present each payment option
available as speci�ed in the response.

This approach ensures clarity for shoppers regarding available options and enables further �exibility
to adapt to additional countries as they are enabled, supporting a future-proof and resilient
integration. In addition, this allows for the presentation of deals to the end customer, allowing Klarna
to drive increased conversion in your merchant checkout.

Option 2: Static
If your integration or that of your merchants cannot dynamically display Klarna payment options,
present Klarna as a single payment choice labeled "Pay with Klarna." This method guarantees the
correct representation of Klarna across all markets and to all shoppers, maintaining consistency and
simplicity.

These methods provide merchants with the �exibility needed for a globally adaptable checkout
experience, aligning with their various shopper experience requirements and expectations.

Dynamic Option
(Recommended)

Static Option

Paywith Klarna button
Allowing the shopper to complete their purchase by using Klarna's JavaScript SDK simpli�es the
checkout process. By implementing the Klarna payments package as detailed here, you can easily
display the payment button and handle the necessary actions when it's clicked. At this point the
payment process is taken over by Klarna, enabling shoppers to proceed with their transactions
ef�ciently.

Con�dential and proprietary information 15

Payment flow

Once the shopper con�rms the intention to pay with Klarna by clicking on the button, they will be
redirected to Klarna payment �ow. The initiation of the �ow will vary depending on the integration
approach:

● Klarna.js integration
● Server-side only integration

Klarna payment �ow provides shoppers with a smart, consistent, and predictable experience,
regardless of where they shop or how they want to pay. It offers a seamless process for both new
and returning shoppers, as account creation is handled within Klarna's modal.

After verifying their phone number, New Klarna shoppers would
need to provide their email, billing address and additional personal
data.
Data points can be pre�lled if supplied by the integrator when
initiating the payment request.

Upon successful authentication,
the shopper will be invited to
select one of the payment options
offered by Klarna.

Con�dential and proprietary information 16

A payment plan will be shown to
the shopper to review (this plan
will vary based on the selected
payment option)

The review screen will allow the
shopper to check all the setup
de�nitions and complete the
payment.

Finally a con�rmation screen will
be displayed before redirecting
the shopper to the redirect_url
provided in the payment request.

Set up your partner account

Partner account

A partner account is a construct that consolidates all
information, capabilities, and features based on
agreements made with a partner of Klarna. It acts as a
central repository for various types of data related to a
partner, similar to a folder on a computer that can store
different types of �les.

A partner account can reference multiple partner product
instances, each con�gured with speci�c capabilities and
con�gurations. For instance, a payments product instance
might have roles for a merchant and an acquiring partner,
with each role having speci�c responsibilities.

Step 1: Configure account credentials

Con�dential and proprietary information 17

To begin your integration with Klarna, the �rst step is to obtain your API credentials. Once your
account is set up by Klarna, we will provide you the �rst API key through a secure link.

When you have your initial API key from Klarna, you will be able to create new API keys and Client IDs
through the Management API.

● API keys: Are used to authenticate server-side REST API requests towards Klarna. In addition,
Klarna may use them to identify the source account.

○ Structure: klarna_<live|test>_<api>_<random>
● Client IDs: Are used to authenticate client-side interactions towards Klarna’s SDK.

○ Structure: klarna_<live|test>_<client>_<random>
○ Due to the nature of frontend authentication, client keys require domain registration.

To learn more about authentication, API keys, Client IDs and Security consult the Authentication
Section.

Account credential management
Credential management is entirely under your control, allowing you to create and manage these for
different services. This setup enhances security by enabling the regular rotation of credentials
automatically, eliminating the need for manual intervention by Klarna.

To minimize risk in the event of a security breach, it's advisable to assign distinct credentials to each of
your services. If one credential is compromised or needs to be disabled, it will not affect the others,
ensuring continuous operation across your integration.

Credentials can be created and managed for live or test mode, and are speci�c to either client-side
or server-side actions. When creating credentials, you can include a description to clarify their
intended use case. This description can later be veri�ed through a GET request to
/v1/account/credentials.

For rotating credentials, it's recommended to support multiple credentials during the transition. The
steps for key rotation involve:

● Creating new credentials.
● Updating the existing credentials to the new credentials.

Con�dential and proprietary information 18

https://docs.klarna.com/api/kn/klarna-management-api/klarna-management-api_release/3/#operation/getCredentials

● Validate the new credentials have been correctly implemented before making a DELETE
request to /v1/account/credentials/{credential_id} to permanently disable the
affected credential.

Consult the API reference for a complete description of the request body parameters.

Rate limiting considerations:
Rate limiting is enforced by Klarna on an account basis. The creation of multiple credentials will not enable increased
rate limits. For more information see Rate Limiting.

⚠ If credentials are not used for two months, they will be disabled to prevent misuse, and will be deleted after ten
months of inactivity. In such cases, credentials can be reactivated or new keys created via Partner Support, your PST
or through APIs, maintaining the security and �exibility of your Klarna interactions.

Step 2: Configure Klarna webhooks
As part of a Klarna integration webhooks allow your applications to receive business event
noti�cations as they occur in integrated Klarna services, so that your backend systems can react in
real time.

The webhooks are customizable, and all of the Klarna APIs come with a standard set of webhook
events that can be subscribed to.

Refer to the "Events categories" section for supported event types.

To start, set up and con�gure webhook events, and target URLs, see the "Getting Started with Klarna
Webhooks guide" guide.

Consult the API reference for a complete description of the request body parameters.

Getting started with Klarna webhooks
To ensure your systems are prepared to receive and handle Klarna noti�cations for uninterrupted
integration with Klarna's services, follow the below process:

1. Establish a secure endpoint
a. Expose an HTTPS endpoint on your server designed to receive webhook

noti�cations.
b. Only HTTPs endpoints are supported, and a valid SSL certi�cate is required.

2. Endpoint Configuration
a. Create a single endpoint for multiple event types or designate separate endpoints for

each event type according to your preference.
b. See more info in the Create and manage webhooks section.

3. Receive Notifications
a. Verify HMAC Signature to ensure data security and integrity
b. See more info in the Create and manage signing keys section.

Con�dential and proprietary information 19

https://docs.klarna.com/api/kn/klarna-management-api/klarna-management-api_release/3/#operation/deleteCredential
https://docs.klarna.com/api/kn/klarna-management-api/klarna-management-api_release/3/
https://docs.klarna.com/api/kn/klarna-management-api/klarna-management-api_release/3/#operation/createWebhook

JavaScript

4. Store the webhook event data for further processing.
a. You will receive Klarna noti�cation to the con�gured webhook endpoint.
b. Example of webhook payload

{
"metadata": {
"event_type": "payment.request.state-change.{event_type}",
"event_id": "{{unique event UUID}}",
"event_version": "v1",
"occurred_at": "2024-01-01T12:00:00Z",
"correlation_id": "{{unique correlation UUID}}",
"account_id": "{{account-specific ID}}",
"product_instance_id": "{{product-specific ID}}",
"webhook_id": "{{webhook-specific ID}}",
"live": {{boolean}}

},
"payload": {{content of the payload varies according to the event type. More
information available in product-specific subsections}}
}

5. Acknowledge the webhook
a. To con�rm successful delivery, responses to webhook noti�cations must be

immediate and should carry an HTTP status code of 200, 201, 202, or 204.
b. Failure to respond or a response with a different status code, will be treated as an

unsuccessful operation by Klarna, triggering the retry mechanism of the noti�cation
at increasing intervals.

6. Retry mechanism
If Klarna receives a timeout or HTTP 4XX or 5XX response codes from your system, the
noti�cation delivery is deemed failed, and Klarna will initiate retries based on its webhook
retry policy. Klarna orchestrates these retries with progressively longer delays, which can
extend up to 12 hours or until a successful response is received.

Here's how the retry schedule is structured:

● The �rst retry occurs 10 seconds after the initial failure.
● If the �rst retry is unsuccessful, a second attempt follows 2 minutes later.
● Subsequent failures trigger another retry after 15 minutes.
● If the issue persists, retries are scheduled at 3 hours, 6 hours, and �nally 12 hours for

the last attempt.

This structured approach ensures multiple opportunities for noti�cations to succeed,
enhancing the reliability of the communication between systems.

Handling failed notifications

Con�dential and proprietary information 20

● If no successful response is received after the �nal retry attempt at 12 hours, the
noti�cation will be considered permanently failed.

Manual processing of failed notifications

● In the event that a partner resolves an issue on their end and wishes to receive the
previously failed noti�cation, they should contact our support team. Our support
team can manually process the failed noti�cations upon request.

When you modify webhook settings during ongoing
retries, these changes will only apply to new
noti�cations. If a triggered Klarna webhook fails to
receive a response code of 200, 201, 202, or 204, it will
continue to retry using the old con�guration until it
either successfully communicates or reaches the
12-hour retry limit.

⚠ To avoid disruptions and ensure a smooth transition, it is recommended to initiate and run a new
webhook in parallel before discontinuing an older webhook. This strategy ensures that the new settings
are fully operational and effective, maintaining seamless noti�cation delivery during the transition period.

Create andmanage signing keys
To securely receive webhook noti�cations, you must generate signing keys and attach them to your
webhooks. This process ensures that you can verify the authenticity of incoming noti�cations. Klarna
will use the signing key to sign the noti�cation before sending. The signature and the identi�er will be
part of the noti�cation, allowing you to validate the noti�cation. When setting up a new webhook,
indicate which signing key to use.

Signing keys considerations

Once Signing Keys are generated, remember to store the signing key as you won't be able to view it again
for validating webhooks.

Con�dential and proprietary information 21

JavaScript

Verify HMAC signature to ensure data security and integrity
1. Compute your signature:

a. Serialize the JSON in the HTTP request body into a string, removing all whitespaces
and newlines.

b. Use the signing_key_id from the header to identify the appropriate signing key.
c. Apply the HMAC-SHA256 algorithm to the serialized string using the signing key.

2. Parse Klarna-Signature:
a. Extract the "Klarna-Signature" from the HTTP headers of the received request.

3. Compare signatures:
a. Match your computed signature against the "Klarna-Signature" from the HTTP

headers.
4. Validate the request:

a. Con�rm the request’s authenticity if the signatures align. If not, reject the request
with an HTTP 400 Bad Request response to indicate potential tampering.

⚠ Currently there is a maximum of 50 signing keys per account. In case you need to create new keys, it
is required to remove unused signing keys through a DELETE request to
/v1/notification/signing-keys/{signing_key_id} .

Response example:

{
"signing_key_id":
"krn:partner:global:notification:signing-key:00000000-0000-0000-0000-0000000000
00",
"signing_key": "00000000-0000-0000-0000-000000000000",
"created_at": "2024-01-01T12:00:00Z"
}

Con�dential and proprietary information 22

https://docs.klarna.com/api/kn/klarna-management-api/klarna-management-api_release/3/#operation/deleteSigningKey

Consult the API reference for a complete description of the request body parameters.

To handle changes such as the rotation of signing keys, it's recommended to support multiple signing
keys during the transition. The steps for key rotation involve:

● Creating a new signing key.
● Updating the recipient server to accept the new signing key.
● Updating the webhook.
● Validate the new signing key has been correctly implemented removing the old signing key.

Create andmanagewebhooks
Create webhooks to receive noti�cations about con�gured events. These noti�cations are sent to
the provided endpoint and signed with the corresponding signing key.

You are able to use wildcards to set up the desired event types.

Webhookwildcards
By using a wildcard such as "*", all events that match the speci�ed pattern will be included.
Example: with "payment.request.*", you will receive all events associated with payments like:

● payment.request.state-change.submitted
● payment.request.state-change.in-progress
● payment.request.state-change.prepared
● payment.request.state-change.authorized
● payment.request.state-change.canceled
● payment.request.state-change.expired
● payment.request.updated

Con�dential and proprietary information 23

https://docs.klarna.com/api/kn/klarna-management-api/klarna-management-api_release/3/#tag/Signing-Keys

JavaScript

Events categories
Here are the categories of events you can receive through webhooks:

● Payment request: Noti�cations of state changes on the lifecycle of a payment request.
● Payment transaction: Noti�cation of state changes on the lifecycle of a payment transaction.
● Payment dispute: Noti�cations of state changes of the dispute lifecycle, for example, when a

dispute is initiated, escalated, or resolved.
● Accounts: Noti�cations when a merchant’s account changes status.
● Settlements: Updates about the settlement process, such as a payout has been done or a

settlement report is ready for download.

Once created, you can use the API requests to manage webhooks and update, delete or list all
details previously con�gured.

Consult the API reference for a complete description of the request body parameters.

Speci�c webhooks associated with individual components of your Klarna integration are listed within
the integration guidelines for those products. Please �nd detailed information on the integration of
those webhook components below:

● Account lifecycle and management webhooks
● Client-side payment request noti�cation events
● Server-side payment request noti�cation events
● Transactional Dispute webhooks
● Settlement webhooks

Simulate and test webhooks
In order to test your webhook integration, you can simulate a webhook by manually triggering an
event that you have subscribed to. Provide the webhook_id, event_type, and event_version for
the webhook previously con�gured to endpoints on your account.

This feature is available in the test environment. We recommend testing your webhook integration
before going live. By manually triggering webhooks, you can instantly simulate any state change for a
payment request without going through the purchase �ow or waiting for the request to expire. This
allows you to test creating, con�rming, and changing the state of payment transactions. You can also
receive noti�cations of expired payment requests for abandoned cart or similar retargeting
purposes.

In the test environment, the simulated webhook endpoint triggers a test event with dummy data that
matches the speci�ed event type schema.

Example webhook event:

{
"metadata": {

Con�dential and proprietary information 24

https://docs.klarna.com/api/kn/klarna-management-api/klarna-management-api_release/3/#tag/Webhooks

"event_type": "payment.request.state-change.authorized",
"event_id": "d9f9b1a0-5b1a-4b0e-9b0a-9e9b1a0d5b1a",
"event_version": "v1",
"occurred_at": "2024-01-01T12:00:00Z",
"correlation_id": "2d1557e8-17c3-466c-924a-bbc3e91c2a02",
"account_id":

"krn:partner:product:payment:ad71bc48-8a07-4919-a2c1-103dba3fc918",
"product_instance_id":

"krn:partner:product:payment:ad71bc48-8a07-4919-a2c1-103dba3fc918",
"webhook_id":

"krn:partner:global:notification:webhook:120e5b7e-dee8-43ca-9858-dca726e639b5",
"live": false

},
"payload": {
"payment_request_id":

"krn:payment:eu1:request:552603c0-fe8b-4ab1-aacb-41d55fafbdb4",
"payment_reference": "partner-payref-1234",
"merchant_reference": "order-5678",
"state": "AUTHORIZED",
"previous_state": "PENDING_CONFIRMATION",
"payment_transaction_id":

"krn:payment:eu1:transaction:6debe89e-98c0-486e-b7a5-08a4f6df94b0"
}

}

Step 3: Account configurationmanagement
This section explains the available con�gurations for setting up accounts and provides
recommendations on how to use them.

When partnering with Klarna as an integrator and distributor of our solutions, we will work together in
the de�nition and your Partner Account will have access to certain resources that are assigned by
Klarna, such as a price plan or settlement con�gurations.

Con�dential and proprietary information 25

https://wiki.klarna.net/wiki/Klarna_Network_All_Diagrams_Library#Management_API_-_PSP_Account_Ressources

You will be able to query these at any given point in time to review the de�nitions agreed via these
endpoints

● /payment/settlement-configurations
● /payment/pricing/price-plans

In response you will receive a list of settlement_configuration_id and price_plan_id.

Release notes

📅 Further con�guration points may become available with future releases.

Price plans
Price plans are read-only and cannot be modi�ed through the APIs. They outline the pricing rates for
transactions based on the Merchant Category Code (MCC) and market speci�cs.

Each price plan includes rates that may vary by market and channel type. These are created and
maintained by Klarna.

Release notes

📅 Retrieval of Price Plans via the APIs will be available in future releases.

Settlement configuration
A settlement con�guration outlines how Klarna will settle funds to a partner. This setup includes
various components crucial for processing payouts:

● Payout schedule: Speci�es when the payout will occur based on when the transaction is
captured.

● Settling business entities: Identi�es the legal entity receiving the funds. This is also the entity
linked to the bank account where funds are deposited.

○ This generally refers to the local entity of the Acquiring Partner that onboarded the
merchant.

● Bank account details: Information regarding where funds should be transferred.
● Currency configuration: Determines which entity receives payouts for which currency. See the

cases below for more detail.
● Payout prefix: A de�ned pre�x added to payouts to assist with identi�cation and

reconciliation.

As an integrator and distribution partner, when you integrate merchants through Klarna, you handle
the settlements towards them, thereby simplifying the reconciliation process on their end. Our
recommendation is that the Klarna account structure matches the account structure de�ned in your
platform, keeping a 1�1 account ratio between the two systems.

Con�dential and proprietary information 26

Example

1. LocalPay is a global Acquiring Partner that processes transactions across multiple regions. It
prefers to receive payouts for all transactions globally to the same bank accounts for all
merchants, regardless of their onboarding country or entity. Therefore, LocalPay does not need
to specify any speci�c settlement con�gurations during the merchant onboarding process.

2. In contrast, GloboPay is a global Acquiring Partner that also processes transactions across
multiple regions. It prefers to settle payouts to different bank accounts by country and currency
for administrative reasons. For example,

a. GloboPay prefers payouts for merchants onboarded in the UK to be directed to
BankAccount1 for all currencies, while

b. payouts for merchants onboarded in the EU should be directed to BankAccount2 for all
currencies.

Consequently, GloboPay needs to specify the applicable settlement con�gurations during the
merchant onboarding process.

Con�dential and proprietary information 27

Onboard andmanagemerchants

Step 1: Determine account structure
Partner accounts are used for managing the relationship between your merchants and Klarna’s
services. These accounts are created and managed by you using Klarna’s Management API and
contain critical information to facilitate a successful partnership. These blocks consist of:

● Account owner: Information about the main representative of the merchant for Klarna.
● Products: List of Klarna products that are being used by the account.
● Channels: List containing the details of the website, mobile app or physical store where

Klarna products are going to be made available
● Extra account information: Any information relevant for Klarna to ef�ciently run its fraud

prevention functionality.

If a merchant operates through multiple entities, you as the integrator and distribution partner
should align the creation of the Klarna merchant account to the structure reflected in your own systems.

If a merchant uses a single entity for
their partnership setup, this simpli�ed
structure should be mirrored in their
Klarna account.

Con�dential and proprietary information 28

If a merchant uses multiple entities,
resulting in different accounts
generated in your systems, you should
create multiple Klarna accounts for
the merchant. Each account in your
system should have a corresponding
Klarna account.

If a merchant uses multiple entities
globally but re�ects them in a single
account in your systems, you should
maintain this structure by creating a
single Klarna account for the
merchant. Each account in your
system should only have one
corresponding Klarna account.

⚠There is a limitation of one website channel per account, which means that multi-website or physical
stores are not supported. More information on Channels are available in the Channel types and
management section.

Products and Accounts have independent life cycles, more information on product and merchant
lifecycles are available in the Manage your merchant section.

Con�dential and proprietary information 29

Release notes
📅 In future releases the channel object will express where the products from Klarna are going to be
made available across multiple channels - including websites, physical stores or mobile apps.

Account structure use cases
Let’s take a look into a few different examples of how merchant accounts can be used to represent
merchants:

Retail
In a typical retail setup, the structure includes a partner account, a payment product, and their
channels.

Example 1:

Consider a small clothing shop in Italy called
"CoolBrand". CoolBrand consists of an online
shop with the URL Coolbrand.com, it is owned
by a single owner, Julia. The store operates
under MCC 5691.

This store receives all their payouts from their
Acquiring Partner in a single bank account. They
operate under the same address to which they
are registered in Milan.

This is an example of a basic partner account
set up. It’s a single account, with a single
payment product, and a single channel.

Given it’s 1�1�1, there is no need to identify
anything when initiating a payment request for
this merchant.

Con�dential and proprietary information 30

JavaScript

Onboarding Payload Example:

{
"account_reference": "M123786123412",
"account_name": "CoolBrand",
"account_owner": {
"given_name": "Julia",
"family_name": "Doe",
"email": "julia.doe@CoolBrand.com",
"phone": "+15555555555"

},
"products": [
{
"distribution_profile_id":

"krn:partner:global:account:distribution-profile:206bbb83-9b6e-46fa-940d-33715
3c04a58",

"type": "PAYMENT",
"merchant_category_code": "5691"

}
],
"channel": {
"websites": [
{
"urls": [
"https://CoolBrand.com"

]
}

]
}

}

Multiple MCCs
Release notes
📅 This capability is currently not supported and will be available in future releases.

A merchant who has multiple Merchant Category Codes (MCCs) but operating under a single account
on your side can be supported by adding payment products with different MCCs to a single account
on Klarna’s side through the Product object.

This model can be applied to merchants that sell different types of products or marketplaces. Details
will be provided alongside future releases.

Multiple channels (websites, physical stores etc)
For companies with multiple websites, we allow you to model the channel con�guration in the same
way as it’s modeled on your side. In case you require different accounts per channel on your end,
you can apply the same model as the simple retail example to create all the different accounts.

Con�dential and proprietary information 31

JavaScript

In case you support multiple channels on the same account, the same can be created on our side.

Example 3

Consider a pastry shop called “Ivette Croissanterie”.

The pastry shop, owned by Ivette, has two physical stores
located in Marseille, France. Ivette also sells pastries through
an on-line store.

The account is con�gured with a payment product with the
MCC 5462, with three channels. Two physical stores, and one
website.

When initiating a payment request, the speci�c channel where
the purchase is being made needs to be passed to the Partner
Product API.

{
"account_reference": "M123789922222",
"account_name": "Ivette Croissanterie",
"account_owner": {
"given_name": "Ivette",
"family_name": "Doe",
"email": "Ivette@IvetteCroissanterie.fr",
"phone": "+49555555555"

},
"products": [
{
"distribution_profile_id":

"krn:partner:global:account:distribution-profile:206bbb83-9b6e-46fa-940d-33715
3c04a58",

"type": "PAYMENT",
"merchant_category_code": "5462"

},
],
"channel": {
"websites": [

Con�dential and proprietary information 32

{
"urls": [
"https://IvetteCroissanterie.fr"

]
}

],
"physical-stores": [
{
"name": "Ivette Croissanterie Joliette",

},
{
"name": "Ivette Croissanterie Port",

}
]

}
}

Release notes

📅 This capability is currently not supported and will be available in future releases.

Franchising
Franchise accounts should be modeled as close as possible to the business structure. Their Klarna
account could be modeled either by

● managing all franchises via a single account
● creating individual accounts for each franchise owner

The form the Klarna account structure takes should be re�ective of the structure of the business,
but for most franchises a single account will suf�ce. This is dependent on how they wish to receive
settlements.

Example 4

Consider a burger chain called William’s Top Burger. William’s operates under a franchise model, where
currently they have three franchisees, owned by Maja, Liam and Vera. Out of the three, Vera was able to
run a really successful business and now owns four different burger locations.

In this case, if the franchises are managed as separate accounts on your side and settlements are
received separately from the Acquiring Partner, they can be modeled using a combination of the Retail
and the Multi Channel examples, as below:

In the Partner Product API, the speci�c account ID and channel ID must be sent as part of the payload so
Klarna can properly identify in which speci�c store the payment request is coming from.

Con�dential and proprietary information 33

JavaScript

Onboarding Payload Example:
To onboard, we would need three /onboard calls:

1st:

{
"account_reference": "M123789922222",
"account_name": "Maja WTB",
"account_owner": {
"given_name": "Maja",
"family_name": "Doe",
"email": "maja.franchisee@wtb.se",
"phone": "+49555555555"

},
"products": [
{
"distribution_profile_id":

"krn:partner:global:account:distribution-profile:206bbb83-9b6e-46fa-940d-337153c04a
58",

"type": "PAYMENT",
"merchant_category_code": "5812"

},
],
"channel": {
"physical-stores": [
{
"name": "Maja WTB",

},
]

}
}

2nd:

Con�dential and proprietary information 34

JavaScript

JavaScript

{
"account_reference": "M123789922222",
"account_name": "Liam WTB",
"account_owner": {
"given_name": "Liam",
"family_name": "Doe",
"email": "liam.franchisee@wtb.se",
"phone": "+49555555555"

},
"products": [
{
"distribution_profile_id":

"krn:partner:global:account:distribution-profile:206bbb83-9b6e-46fa-940d-337153c04a
58",

"type": "PAYMENT",
"merchant_category_code": "5812"

},
],
"channel": {
"physical-stores": [
{
"name": "Liam WTB",

},
]

}
}

3rd:

{
"account_reference": "M123789922222",
"account_name": "Vera WTB",
"account_owner": {
"given_name": "Vera",
"family_name": "Doe",
"email": "vera.franchisee@wtb.se",
"phone": "+49555555555"

},
"products": [
{
"distribution_profile_id":

"krn:partner:global:account:distribution-profile:206bbb83-9b6e-46fa-940d-337153c04a
58",

"type": "PAYMENT",
"merchant_category_code": "5812"

},
],
"channel": {
"physical-stores": [

"name": "Vera WTB #1",
},

Con�dential and proprietary information 35

{
"name": "Vera WTB #2",

},
{
"name": "Vera WTB #3",

},
{
"name": "Vera WTB #4",

},
]

}
}

Release notes

📅 This feature will be available in future releases.

Step 2: Onboardmerchants
To start offering Klarna services to your merchants, you must �rst onboard them to Klarna.

When onboarding a merchant, make sure that you have de�ned the proper structure based on the
merchant business model, follow the guidance in Step 1: Determine account structure section.

During the onboarding process, Klarna will assess the product object provided to enable the
appropriate services. For example, selecting a payment product will activate all related
payment-related services in all markets where Klarna is available, allowing a merchant to offer Klarna
as a payment method.

While only a subset of data points is mandatory to complete this phase, we require that all relevant
information available is provided to allow us to accurately manage potential risks and make informed
decisions regarding merchants and transactions.

When a merchant is onboarded with Klarna, Klarna will create an account for the merchant and
return an account_id in the onboarding response. At this point - they are ready to begin transacting
in all markets where Klarna is available.

⚠ Remember to store the account_id associated with the merchant as it is a required parameter for the
integration of the Partner Product API.

The following example is only for illustrative purposes, and required parameters for onboarding may
differ according to your commercial agreement and the parameters available to you.

Consult the API reference for a complete description of the request body parameters.

Request example:

Con�dential and proprietary information 36

https://docs.klarna.com/api/kn/klarna-management-api/klarna-management-api_release/3/#operation/onboard

Unset

Unset

{
"account_reference": "M123786123412",
"account_name": "John Doe Stakehouse",
"account_owner": {
"given_name": "John",
"family_name": "Doe",
"email": "john.doe@example.com",
"phone": "+18445527621"

},
"products": [
{
"type": "PAYMENTS",
"merchant_category_code": "7995"

}
],
"channel": {
"websites": [
{
"urls": [
"https://example.com"

]
}

]
}

}

Response example:

{
"account_id": "krn:partner:global:account:live:LWT2XJSW"

}

Handling rejected onboardings
Integrating Klarna payment solutions requires accurate and complete merchant data to ensure
seamless transaction processes and fraud prevention. This section covers the essential steps and
protocols activated when discrepancies in merchant data are detected during the onboarding
process

Identification of incomplete or incorrect data

Klarna's onboarding API performs real-time validations on all incoming data. When data �elds are
missing or incorrect, the system triggers an automated response outlining the speci�c issues. These
validations cover critical information such as business details, tax IDs, and contact information.

Con�dential and proprietary information 37

Step 3: Manage yourmerchant payment products
Using the Management API, you have full control over merchant accounts and their associated data.
Each data object within an account is accessible via standard REST endpoints, allowing you to
update, create, and delete resources as needed.

Through the Management API, you have full control over merchant accounts and their associated
data. Each data object within an account is accessible via standard REST endpoints, allowing you to
update, create, and delete resources as needed.

Products within these accounts follow a speci�c lifecycle, ensuring they are managed ef�ciently
from inception to discontinuation. The lifecycle diagram below provides detailed insight into these
stages.

Familiarize yourself with these processes and actively use the available tools to optimize account
operations and product handling. Review the lifecycle diagram to better understand each stage.

Where:

Status Definition

ENABLED the product is capable of processing new payment requests

DISABLED the product cannot process new payment requests. It can be reverted
if you are the one that disabled it. Other operations, such as
post-purchase calls, may still succeed.

TERMINATED The payment product is fully disabled by Klarna due to fraud.

These statuses can be manipulated through the following APIs:

● Disable: /v1/accounts/{account_id}/products/payment/disable
● Enable: /v1/accounts/{account_id}/products/payment/enable

Release notes

📅 DISABLE state for Payment Products will be supported in later releases.

Con�dential and proprietary information 38

https://docs.klarna.com/api/kn/klarna-management-api/klarna-management-api_release/3/#operation/disableAccountPaymentProduct
https://docs.klarna.com/api/kn/klarna-management-api/klarna-management-api_release/3/#operation/enableAccountPaymentProduct

The following table lists all different events supported by Klarna webhooks for product management
that will allow you to get immediate noti�cation when certain events take place, in order to act on
them immediately.

Use Case When Event name

Product disabled
webhook

A product is disabled due to any
reason, including suspension due to
fraudulent behavior

partner.account.product.payment.
state-change.disabled

Product enabled
webhook

A product is enabled due to any reason,
including recovery from fraud

partner.account.product.payment.
state-change.enabled

Consult the API reference for a complete description of the request body parameters.

⚠Klarna may also disable an account based on fraud or other unsavory behavior.

Channel types andmanagement
A key component of a partner account is the channel. Channels represent where Klarna’s services
are going to be available to shoppers via the merchant. Channels can be one of the following types:

Types Definition

Website Online channel where Klarna’s payment products are shown

Physical store Brick and mortar store where a shopper can use Klarna to pay for goods

Mobile app Mobile app where Klarna’s payment options can be used

⚠Each partner account must have at least one channel. If an account has only one channel, no further
speci�cations are required.

Release Notes

📅 Future releases will support multiple channels within a single account.

When a partner account contains multiple channels, it is essential to specify the exact channel
through which a payment is being processed at the time of making a payment request. This ensures
that the correct brand identity features are displayed to shoppers, enhancing their shopping
experience. Accurately identifying the payment channel is also crucial for the effectiveness of
Klarna’s fraud assessment systems.

Con�dential and proprietary information 39

https://docs.klarna.com/api/kn/klarna-management-api/klarna-management-api_release/3/#tag/Payment-Products

Channel collections

Channel collections are designed to unify brand identity across various shopper touch points. Each
channel collection comprises merchant-speci�c details such as branding, support channels, and
social media links. This information is crucial for enhancing the shopper’s purchase and
post-purchase experience, for example in the Klarna app.

To ef�ciently manage branding across multiple channels, channel collections use the
collection_reference attribute. Once a collection is created and assigned a reference, this
reference can be assigned to different channels to apply consistent branding without the need to
replicate branding details for each channel individually.

To implement channel collections in your system, start by de�ning the branding, support, and social
media details within a collection. Assign a unique collection_reference to this collection, and
apply this reference to each desired channel. This approach ensures that the merchant’s brand
identity is consistently represented, enhancing recognition and trust among shoppers.

Consult the API reference for a complete description of the request body parameters.

Keepmerchant data updated
Data integrity is essential

Maintaining accurate merchant account information is essential for the seamless operation of Klarna's
services. It is crucial to update this information whenever there are any changes in your systems to a
merchant's account details.

Account lifecycle webhooks
A Partner Account has a simpli�ed life cycle, as mostly just implementing logic around the Product
life cycle is suf�cient for a successful integration with our APIs. The account lifecycle can only be
manipulated by Klarnaand is represented in the diagram below.

Where:

Parameter Definition

PARTIALLY_OPERATIONAL Represents an account that was just onboarded and is
currently being set up in our systems. The account can
process transactions, but can not yet be managed. This
state is transitional, and typically moves to OPERATIONAL
within seconds. y.

Con�dential and proprietary information 40

https://docs.klarna.com/api/kn/klarna-management-api/klarna-management-api_release/3/#tag/Collections

Unset

Parameter Definition

OPERATIONAL Represents an account that is fully operational and can both
be managed and process transactions.

DISABLED Represents an account that is no longer operational in any
respect. The account cannot be managed by the partner or
have any new products added to it. All products within an
account are fully disabled as a part of this status.

Ensure that you con�gure management webhooks to receive noti�cations about status changes and
merchant account statuses.

The following table lists all different events supported by Klarna webhooks for account management
that will allow you to get immediate noti�cation when certain events take place, in order to act on
them immediately.

Use case When Event name

Account fully
onboarded
webhooks

An account is fully set up on
Klarna’s side

partner.account.state-change.operational

The following example re�ects the payload structure for
partner.account.state-change.operational event. It differs slightly from the general
webhook format as it doesn’t contain a product_instance_id, given this event affects the whole
account.

Example:

{
"metadata": {
"event_type": "partner.account.state-change.operational",
"event_version": "v1",
"occurred_at": "2024-01-01T12:00:00Z",
"correlation_id": "2d1557e8-17c3-466c-924a-bbc3e91c2a02",
"account_id": "krn:partner:account:live:2AIMNWR6IYZVD",
"webhook_id":

"krn:partner:global:notification:webhook:120e5b7e-abcd-4def-8a90-dca726e639b5",
"live": true

},
"payload": {
"account_reference": "M123786123412",
"state": "OPERATIONAL",
"previous_state": "PARTIALLY_OPERATIONAL"

}
}

Con�dential and proprietary information 41

Enable interoperability of Klarna products
Interoperability refers to the ability of Klarna's products to work seamlessly regardless of integration
method. This seamless interaction ensures merchants can provide a smooth shopping experience
using Klarna's features, such as Express checkout, On-site messaging, and Sign in with Klarna while
using an Acquiring Partner to add Klarna to their payment processing.

The objective is to guarantee that Klarna's products are uniformly available across all integrations,
ensuring that there are no gaps in the merchant offering - whether directly integrated with Klarna or
through any partner. This approach not only streamlines operations for our partners but also
guarantees that shoppers bene�t from seamless transactions and features, regardless of the
merchants integration method.

Step 1: Grant access to Klarna’s ecosystem

As Klarna distributes non-payment products
directly to merchants, such as On-site
messaging. It is essential for merchants to
access the Klarna ecosystem after a successful
authentication.

This can be achieved through one or more of the
following solutions:

● Deep Link integration (recommended):
incorporate a deep link to the Klarna
portal within your dashboard. Ensure this
link is clearly labeled to indicate its
purpose and integrates smoothly with
your existing user interface.

● E-mail access provision (alternative) : if
your ecosystem lacks an admin area for
granting access through a deep-link, you
will need to use Klarna’s onboarding API
to grant your accounts access to the portal. Access to the portal is given by enrolling a user
using their email address.

Release Notes

📅 In a later release an endpoint will be introduced to allow the creation of Merchant Portal accounts.

Con�dential and proprietary information 42

Through the portal, merchants are able to access and manage Klarna boost products. They have no
ability to access or manage any payment related processes, which happens through the partners
platform. The core functionalities available through the Klarna portal include:

● Setup of Klarna visual assets: merchants can enhance how their brand is presented in the
Klarna app by adding branding elements such as logos, icons, social media URLs, and display
names. These adjustments contribute to a smoother and more engaging self-serve shopper
experience.

● Boost product access: access to Boost products like On-site messaging, Klarna Express
checkout, and Sign in with Klarna.

● Merchant credential management: merchants can generate their own client identi�ers and API
keys. Credentials generated by merchants onboarded by an Acquiring Partner are limited
and do not have permission to access or manage payment processing.

● Merchant campaigns: additionally, the Klarna portal enables merchants to launch campaigns
offering 0% �nancing and other promotions.

In speci�c instances based on available features in your back of�ce system, a merchant will be able
to access additional capabilities via the Klarna portal, such as dispute management.

This access is assigned through the use of the roles array outlined below. Individual roles are
de�ned by Klarna during your onboarding process.

Creating a deep link
Integrating deep linking within your ecosystem ensures your merchants are able to manage Klarna
products from within your ecosystem without requiring additional login credentials - ensuring the
bene�ts of direct integration while retaining the simplicity of your value proposition.

You may only create deep links for the merchant accounts that you have previously created through
a POST request to /v1/accounts/{account_id}/portal/deep-links.

A deep link to the Klarna portal can be requested via API, which is a one-time use link that expires
after 60 seconds. Once the user has accessed the Klarna portal using the deep link, no additional
authentication will be needed and the session initiated will be valid for 8 hours, after which the user
will be logged off and will need to log in again.

At this moment you can de�ne the level of access granted to the user by setting the roles array.

Parameter Definition

user_reference

The identi�er of the user whom the deep-link is generated for. It
should be traceable for auditing, support or debugging purposes
and it should not be a personal identi�er such as email. This
reference is provided by the Partner.

roles[] Contains the permissions to apps inside the Merchant Portal. Roles
to be de�ned at a later date.

Con�dential and proprietary information 43

https://docs.klarna.com/api/kn/global-api-ecosystem/

Release notes

📅 roles will be de�ned in later releases.

Upon creating a deep-link successfully, Klarna will provide a URL that allows access to the Klarna
portal. This link should be requested by you, as a distribution partner, only after the merchant
expresses a desire to enter the Klarna portal. The URL will be issued only if the partner account
credentials are veri�ed by Klarna and match the partner authorized to manage the speci�ed
account.

Step 2: Consume and pass key identifiers
To provide the best performing shopper experience, it is crucial for all parties within the Klarna
network to effectively manage and utilize key identi�ers provided by Klarna. These identi�ers,
speci�cally the shopping_session_token and payment_confirmation_token, are integral to
ensuring a seamless, secure, and ef�cient transaction process across various platforms and
integration types. Understanding and implementing these identi�ers correctly can signi�cantly
contribute to a more personalized and cohesive shopper experience.

Shopping session token
The shopping_session_token is a cornerstone identi�er within Klarna’s ecosystem, enhancing the
shopper experience by providing continuity across integrations with different Klarna services such
as On-site Messaging and Sign in with Klarna. It minimizes friction for shoppers by maintaining a
consistent session across different platforms and providing a framework for personalization and
keeping shoppers signed in across services.

The shopping_session_token is provided directly to the party implementing the Klarna Web SDK.
Merchants integrating Klarna Boost products directly will receive the identi�er directly from Klarna
and must later provide it to Klarna via your services. If you manage the client-side presentation of
Klarna, you may receive the shopping_session_token directly and must make it available to the
merchant so that it can be used across all Klarna services.

Implementation of the shopping_session_token allows for key operational improvements like:

● Increased flexibility across Klarna services, ensuring that shoppers can enjoy a seamless
transition between different merchant offerings without repeated logins or data entries.

● Enhanced security and fraud detection by providing a broader understanding of customer
activity, a consistent identi�er helps in monitoring and mitigating potential fraud across
different sessions and platforms.

To optimize the use of shopping_session_token, you, as a distribution partner, must adhere to the
following requirements:

Con�dential and proprietary information 44

● Integration: merchants should have the option to include a shopping session token,
speci�cally namespaced for Klarna, when integrating any Partner product that utilizes Klarna
services. This parameter is optional and its absence should not cause technical issues.

● Parameter handling: when a merchant provides this optional identi�er through the API, it is the
responsibility of the acquiring partner to:

○ Reuse the identi�er and return it to Klarna using the Web SDK.
○ Include the identi�er when creating a server-side payment request.
○ Return the identi�er to the merchant if using Klarna Web SDK, as appropriate.

● Visibility and usage: when Klarna provides you with a shopping session token, it must be made
visible to the merchant. This enables the merchant to use the identi�er across different
products or integrations effectively.

Key touchpoints

● Web SDK integration: if Web SDK is being used, the shopping_session_token should be
incorporated to maintain session continuity. This ensures that the shopper can navigate
through different stages of interaction without session breaks, enhancing user experience
and maintaining session integrity.

● Upstream messaging: if upstream messaging is being used, integrating the
shopping_session_token can help tailor the messages based on the shopper's previous
interactions and behaviors across the Klarna network, providing a personalized and cohesive
shopping experience.

● Payment-specific calls: during any payment-speci�c calls, including the
shopping_session_token helps link the transaction to a speci�c shopper session. This is
crucial for tracking the shopper’s journey through different payment stages and for
supporting advanced security measures like fraud detection.

By integrating and effectively managing the shopping_session_token, you and your merchants
can provide a smart and more secure shopping experience, fostering greater shopper loyalty and
operational ef�ciency.

Release notes

📅 shopping_session_token will be available in future releases.

Payment Confirmation Token
The payment_confirmation_token is generated at the completion of a transaction using Klarna
services. This token is crucial for con�rming and �nalizing transactions within your system, ensuring
that the payment process adheres to both Klarna and your protocols.

Implementation of the payment_confirmation_token allows the merchant to bene�t from Klarna
Express checkout, allowing your partners to bene�t from Klarna’s express checkout in addition to
your integrated Klarna services. The payment_con�rmation_token is provided by Klarna in response
to a successfully completed express checkout transaction. Enabling merchants to pass this token via
your services allows for seamless integration with Klarna’s Express Checkout.

Con�dential and proprietary information 45

To effectively integrate and utilize the payment_confirmation_token, adhere to the following
streamlined process:

● Endpoint requirements: establish at least one endpoint that allows merchants to complete a
payment request using a Klarna con�rmation token as a parameter. This endpoint, whether
existing or new, should require essential payment details such as payment_amount and
currency, but avoid any additional data requirements that could complicate integration.

● Payment confirmation: utilize the con�rmation token to con�rm the payment via Klarna’s
Partner product API.

● Payment lifecycle management: once the payment is registered, it should follow the standard
lifecycle of the acquiring partner’s system. The payment should be managed and accessible
in the same manner as payments integrated directly without Klarna Express checkout.

● Seamless integration:ensure there is no distinction in handling or behavior between
transactions completed using Klarna Express checkout and those placed directly through
your system. As the acquiring partner, you must con�rm payments from Klarna using the
same protocols as for direct integrations.

This approach guarantees minimal integration effort while maintaining consistency in payment
processing and user experience.

Key touchpoints

To streamline the payment process, the integration of a payment con�rmation token should be made
available at any touchpoint which may result in the completion of a transaction for other payment
methods. Here are the key touchpoints where the payment con�rmation token may play a crucial
role:

● Create calls:during the initiation of any create_payment_request or
confirm_payment_request calls, implementing the payment con�rmation token can
simplify the merchant's integration process. This setup streamlines the transaction �ow by
securely encapsulating payment details.

● Tokenization or off-session flow:utilizing any tokenized payment �ow is an excellent
opportunity to introduce the payment con�rmation token. This approach is bene�cial as
merchants anticipate a completed transaction from the existing integration, enhancing the
security and ef�ciency of the payment process.

● Express checkout flows:For any alternative express checkout options provided, incorporating
the handling of the payment con�rmation token is advisable. This ensures that the Express
checkout process aligns well with secure transaction practices.

The successful completion of a transaction using the payment con�rmation token triggers the same
noti�cations and status updates as seen in standard Klarna payment processes. It is crucial for your
integration to listen to Klarna webhooks as a reliable source for transaction status updates. Always
ensure to validate and test these �ows thoroughly to maintain seamless and secure operations.

Release notes

📅 payment_confirmation_token will be available in future releases.

Con�dential and proprietary information 46

Step 3: Supplementary shopping data
To ensure a seamless payment experience and enhance the data richness of transactions, it's
crucial to transmit any supplementary shopping data collected to Klarna. This process utilizes the
merchant_supplementary_data parameter present in the Partner product API, enriching the
quality and detail of the information available for each transaction.

To facilitate the provision of additional data helpful to Klarna’s decision making, a passthrough �eld
must be made available to merchants. This �eld supports the inclusion of information required by
Klarna that may not be initially collected. Adherence to the following principles is crucial:

● Data integrity: The data within the passthrough �eld must not be altered or validated beyond
the constraints outlined in the integration guidelines.

● Data transmission: If the merchant utilizes the supplementary data, the acquiring partner
should relay this information through the payments feature of the Partner Product API.

● Efficiency in data handling: Any supplementary data already collected by you, as partner,
should be transmitted to Klarna without requiring additional efforts from the merchant. If no
supplementary data is gathered by you, a passthrough �eld allowing partners to pass
required information must be made available.

These measures ensure that merchants can add valuable data to their payment requests seamlessly
and without unnecessary complexity.

Key touchpoints

To ensure comprehensive integration, it is essential that supplementary shopping data is accessible
to the merchant during all payment-related interactions. This integration may occur at various
stages, depending on your’s system setup:

● Initiation of SDKs: When initiating the Klarna SDK, ensure that supplementary shopping data
�elds are incorporated. This step is crucial for capturing relevant data right from the start of
the transaction process.

● Transactional API calls: During any API calls made to Klarna, supplementary shopping data
should be included. This ensures that all transaction-related information conveyed to Klarna
is comprehensive and detailed.

Incorporating this �eld across all touchpoints is vital for maintaining data continuity and enhancing
the payment experience. By doing so, merchants can leverage this data to facilitate smoother
transactions and improve overall shopper satisfaction.

Release notes

📅 Supplementary data support will be available in future releases.

Con�dential and proprietary information 47

Processing of Klarna payments
To integrate Klarna payment solutions as an Acquiring Partner, we provide �exible integration options
to accommodate various integration styles. These options allow you to tailor the integration to your
speci�c needs and the needs of your merchants.

● For offerings where you, the acquiring partner, own a client-side component—such as hosted
checkout solutions or embedded components—we require a client-side integration leveraging
Klarna’s SDK, Klarna.js, and Klarna’s Partner Product API. This ensures a seamless
implementation of Klarna payments directly on your platform, providing advanced
functionality for security and ease of checkout.

● For offerings that solely provide server-side integration to merchants, where the merchant
owns the client-side integration of Klarna, you should adopt the Partner Product API and
expose redirect links to your merchants. This ensures compliance while allowing for �exibility
to accommodate your integration style.

1. Initiate the payment request client-side
using the Klarna.js initiate()
method.

2. Retrieve a payment con�rmation token
from a successful checkout.

3. Con�rm the payment server-side to obtain
an authorized transaction.

1. Initiate the payment request server-side and
redirect the shopper to a Klarna Payment
page.

2. Retrieve a payment con�rmation token from
a successful checkout.

3. Con�rm the payment server-side to obtain
an authorized transaction.

Use the shopping_session_token to create a uni�ed and seamless shopping experience,
especially when your integration includes both client-side and server-side elements. This id is
provided by the Klarna web SDK in response to any initiating action where an existing
shopping_session_token is not provided. By providing this parameter to your merchants (where

Con�dential and proprietary information 48

the initiation of Web SDK is owned by you), and allowing the merchant to pass the parameter in all
your requests, you tie together these elements, ensuring consistent data �ow and maintaining
session continuity throughout the shopper's journey.

Implementing the shopping_session_token enhances personalization, security, and cohesion in
the checkout process, reducing friction and leading to higher customer satisfaction and increased
conversion rates. More information on leveraging shopping_session_token to improve the
customer experience is detailed in the interoperability section.

Web ecommerce transaction

Recommended integration: Payment request initiated via Klarna.js
A client-side integration via the Javascript library Klarna.jsprovides shoppers with a seamless
checkout experience allowing them to complete their purchase without leaving the merchant's
website. Furthermore, it allows additional features to enrich the shopping experience, such as our
1-click express checkout solution, Klarna Express checkout.

Below is an illustration of the integration �ow:

Step 1: Include the Klarna.js

To ensure optimal performance and security, include the Klarna.js script on every page of your
website that displays a Klarna component. Always load the script directly from
https://js.klarna.com/web-sdk/v1/klarna.js; do not include it in a bundle or host it yourself. This
approach guarantees that you are using an up to date version of the script, thereby enhancing
security and enabling automatic updates for new features.

When Klarna.js is initiated, the shopping_session_token will be provided which should be handled
as outlined in the shopping session token section. Within your create session APIs, you should allow

Con�dential and proprietary information 49

https://js.klarna.com/web-sdk/v1/klarna.js

JavaScript

the merchant to provide a shopping_session_token in case they have previously started a Klarna
session regarding the customer arriving at the checkout.

Initialization of the Web SDK

<script defer
src="https://js.klarna.com/web-sdk/v1/klarna.js"
data-client-instance-name="IntegratorName"

></script>

<script>
window.KlarnaSDKCallback_IntegratorName = async (Klarna) => {
// Klarna SDK ready to be initialized with klarna.init(...)
const klarna = await Klarna.init({
accountId: "<the partner account id>",
clientId: "<your client id>",

})
// Klarna SDK ready to be utilized

}
</script>

See supported browsers consideration by the Klarna Web SDK here. Ensure that your usage of the
SDK aligns with these browsers to guarantee full functionality.

⚠ Klarna requires acquiring partners to use the programmatic initiation of the script, removing reliance
on the global callback to understand when Klarna is ready and ensuring merchant-initiated SDKs do not
cause con�icts in the loading of the Klarna Web SDK.

Therefore, the client instance name must be passed via the script tag, as it is used to infer the name of
the callback that the PSP should use to access their Klarna object (e.g.,
KlarnaSDKCallback_IntegratorName).

Step 2: Check availability and display Klarna at the checkout
As part of integrating Klarna payment solutions into your offerings as an Acquiring partner, we
require that a structured approach is followed to ensure a seamless implementation. Central to this
is con�rming the availability of Klarna payment options and customizing the payment messaging to
enhance the user experience.

By utilizing methods such as canMakePayment() and getPlacementContent(), you can ensure
that your platform effectively offers Klarna's payment solutions. The objective is to achieve an
optimal checkout process, leading to increased customer satisfaction and higher conversion rates.

Con�dential and proprietary information 50

https://js.klarna.com/web-sdk/v1/klarna.js
https://docs.klarna.com/websdk/typedocs/#md:supported-browsers

JavaScript

2.1 - Confirm availability

Invoke the canMakePayment()method to �nd out if a payment is currently possible. This method
checks if Klarna is available for a speci�c combination of customer country, currency, and amount.
This allows Klarna to roll out to new markets without requiring direct communication with partners,
and ensures that your platform can dynamically adapt to Karna's availability.

const canMakePayment = await klarna.Payment.canMakePayment({
currency: "EUR",
country: "DE",
paymentAmount: 10000,

})

if (canMakePayment) {
// Show Klarna in the checkout

}

The canMakePayment()method returns a promise which resolves to a boolean value (true or false):

● If true, it indicates that the payment can be processed using Klarna and you should proceed
with the payment process as planned.

● If false, Klarna is not available for the speci�ed combination of parameters, and you should
provide an alternative payment method to ensure a smooth checkout experience for your
customers.

2.2 - Get content for Klarna’s payment badge, descriptor, and subheaders

1. Payment descriptor
High-level call to action.
Provided in Klarna
response.

2. Payment subheader
More detailed breakdown
of the value of the option
presented. Provided in
Klarna response.

3. Klarna badge
Klarna logo. Provided in
Klarna response.

Con�dential and proprietary information 51

By using the getPlacementContent()method of klarna.js Messaging package it is possible to
retrieve information about descriptors, subheaders and the Klarna badge.

Release notes

📅 The getPlacementContent()method will be made available in a future release.

To achieve a �exible and global solution that allows merchants to choose their preferred
presentation method, as per Enhance the shopping experience, we require you to allow your
merchants to pass themessage_preferenceparameter at checkout. If no preference is provided by
your merchant, the default behavior is to display all available options separately.

Parameters

Parameter Definition

locale Locale to use for returned content.

BCP 47 (concatenation of language code (ISO 639�1
format) + "-" + country code (ISO 3166�1 alpha-2 format))

Example: en-US

currency (optional) The purchase currency of the transaction. Formatted
according to ISO 4217 standard, e.g. USD, EUR, SEK, GBP,
etc.
If not provided, default currency for the locale is used.

payment_amount Total amount of a one-off purchase, including tax and
any available discounts. The value should be in
non-negative minor units. Eg: 25 Dollars should be 2500.

message_preference
(optional)

Indicates the preferred payment option.
Enum:

● PAY_NOW
● PAY_LATER
● PAY_OVER_TIME
● KLARNA

Example

Possible scenarios for message_preference parameter:

● If no message_preference is speci�ed, the messaging copy for the all-option approach
will be returned by default (default and recommended solution)

● If message_preference=KLARNA is speci�ed, Klarna will return the messaging copy for
the Single-option approach

If neither dynamic option is supported, the static one-option presentation of Klarna must be
leveraged. See more information regarding the available approaches here.

Con�dential and proprietary information 52

JavaScript

Unset

Request example:

const descriptor = klarna.Messaging.getPlacementContent({
key: "payment-descriptors",
payment_amount: 20000,
locale: "fr-CA"

})

In the response, Klarna will return an array of payment descriptors listing the content to be displayed
(PAYMENT_DESCRIPTOR, PAYMENT_DESCRIPTOR_SUBHEADER, KLARNA_BADGE), indexed per
payment_option_id.

The payment_option_id is a parameter that should be used when initiating the payment request,
as it allows you, as the acquiring partner, to preselect the corresponding payment option when the
shopper enters the purchase �ow.

Release notes

📅 PAYMENT_DESCRIPTOR_SUBHEADER support will be added in a later release.

Response example:

{
"paymentDescriptors": [
{
"paymentOptionId": "123xyz",
"content": {
"nodes": [
{
"name": "PAYMENT_DESCRIPTOR",
"type": "TEXT",
"value": "Pay now"

},
{
"name": "PAYMENT_DESCRIPTOR_SUBHEADER",
"type": "TEXT",
"value": "Pay in full today"

},
{
"name": "KLARNA_BADGE",
"type": "IMAGE",
"url": "...",
"label": "Klarna logo"

}

Con�dential and proprietary information 53

]
}

},
{
"paymentOptionId": "123xyz",
"content": {
"nodes": [
{
"name": "PAYMENT_DESCRIPTOR",
"type": "TEXT",
"value": "Pay in 4-interest-free"

},
{
"name": "PAYMENT_DESCRIPTOR_SUBHEADER",
"type": "TEXT",
"value": "Pay in 4-interest-free payments of $25.00"

},
{
"name": "KLARNA_BADGE",
"type": "IMAGE",
"url": "...",
"label": "Klarna logo"

}
]

}
},
{
"paymentOptionId": "123xyz",
"content": {
"nodes": [
{
"name": "PAYMENT_DESCRIPTOR",
"type": "TEXT",
"value": "Pay over time"

},
{
"name": "PAYMENT_DESCRIPTOR_SUBHEADER",
"type": "TEXT",
"value": "Split the cost into smaller payments over 6-24 months"

},
{
"name": "KLARNA_BADGE",
"type": "IMAGE",
"url": "...",
"label": "Klarna logo"

}
]

}
}

]
}

Con�dential and proprietary information 54

JavaScript

2.3 - Display the Klarna checkout placement

The messaging package contains a custom element that can resolve into a collection of what we
denote “placements''. These placements represent a form of visual text or imagery that represents
the Klarna brand.

Checkout Placement

Displayed when the customer selects
a Klarna payment option, this section
includes a buyer protection USP and a
"learn more" link.

var klarnaMessaging = klarna.Messaging.placement({
key: "checkout",
amount: 10000,
currency: "USD",
locale: "en-US"

}).mount("#checkout");

Static assets

If relying on external dependencies is not feasible when building the checkout, or if you, the
acquiring partner, do not own the client-side presentation of Klarna and cannot accept the
payment_option_id, all assets (such as payment descriptors, payment subheaders, and the Klarna
badge) are accessible as static content on docs.klarna.com. Klarna requires that up-to-date branding
be in place in all checkouts, and it is the responsibility of the integrator to ensure that static assets
remain current.

When using static assets, only the "one option" payment presentation will be available. Attempting to
present multiple options will add friction, as any preselection made in your checkout will not persist
within the Klarna session.

⚠Klarna may periodically update these assets, in which case it is the integrators responsibility to
ensure they are using the latest version.

Con�dential and proprietary information 55

https://docs.klarna.com

Unset

JavaScript

Step 3: Initiate payment request client-side using the Klarna payment button
Klarna requires the payment request be initiated using the Klarna payment button wherever
possible. This allows for the simplest and best maintained client-side integration. If this is not
possible, an alternate �ow is described in the Klarna payment button cannot be initiated.

3.1. Add a <div> to your page where the Klarna payment button will be rendered:

<div id="#button-container"></div>

3.2. Use the klarna.js public endpoint in the Payment package:

var klarnaPaymentButton = klarna.Payment.button({
id: "klarna-payment-button",
shape: "pill",
label: "Pay",
theme: "dark"

});

klarnaPaymentButton.mount('#button-container');

3.3. Prepare the button click event configuration

Configure the InteractionMode

The payment request options allows you to specify the interactionMode parameter which controls
how the Klarna purchase �ow is launched (redirect / modal window) on different devices
(mobile/desktop/native):

interactionMode Definition

DEVICE_BEST This is the default value and recommended. Klarna
automatically selects the best �ow depending on the device:

● Mobile: REDIRECT
● Desktop: Modal window if possible, fallback to

REDIRECT.
● Native webview (mobile app) - REDIRECT

Note:a config.redirectUrl is required in the payment
request for this interaction mode

Con�dential and proprietary information 56

JavaScript

interactionMode Definition

ON_PAGE This value should be used only if redirection is not possible.
The transaction happens on the same page by using a modal
window if possible, if not then it will fallback to fullscreen
iframe.

REDIRECT Only redirect �ow.

Note:a config.redirectUrl is required in the payment
request for this interaction mode

Generate a Redirect URL

The redirectUrl directs the shopper back to the merchant’s website after a successful or aborted
payment request. By incorporating placeholders into the URL, Klarna can dynamically insert relevant
transaction information, ensuring the URL contains all necessary details for processing of a
transaction.

Redirect URL example:

config: {
redirectUrl:

"https://partner.example/klarna-redirect?confirmation_token={klarna.payment_request.paymen
t_confirmation_token}&request_id={klarna.payment_request.id}&state={klarna.payment_request
.state}&reference={klarna.payment_request.payment_reference}"
}

These placeholders ensure that the redirect URL dynamically includes all necessary transaction
details. Klarna will replace these placeholders with actual values before redirection, allowing
partners to seamlessly handle the redirection process and ensure that all essential information is
available for transaction processing. Details of the available placeholders are available below:

Placeholder Description Example

{klarna.payment
_request.paymen
t_confirmation_
token}

The con�rmation token, available when a
transaction is successfully completed,
and used to con�rm the transaction.

krn:payment:eu1:con�rmation-token:51bbf
3db-940e-5cb3�9003�381f0cd731b7

{klarna.payment
_request.id}

Klarna Payment Request identi�er. Used
in management of a Payment Request.

bebeabea-5651�67a4-a843�106cc3c9616a

{klarna.payment
_request.state}

State of the payment request - may be
used as a hint.

AUTHORIZED

Con�dential and proprietary information 57

{klarna.payment
_request.paymen
t_reference}

The provided reference to the payment
request.

partner-payment-reference-12345

Payment request updates

A payment request can either be created explicitly by you, as integrator, using the Klarna payment
request or implicitly via the Klarna payment button Interface:

● Once the Web SDK is loaded and a payment request is created, that same it is used
throughout the entire session.

● The payment request cannot be retrieved server-side until it is not shared with Klarna when
the initiate()method is called.

● When using the Klarna payment button, the initial payment request is passed in the click
handler. The click handler allows you to modify the payment request data and choose if you
want to initiate the payment.

Both the request() and initiate()methods share the same set of input parameters.

● request(paymentRequestData?, options?): Request
● initiate(paymentRequestData?, options?): Promise<void>

The payment request data allows the integrator to provide properties for the ongoing purchase.

Parameter Definition

paymentAmount Total payment amount

currency 3-letter ISO 4217 currency code

config (optional) Con�guration object for the payment request, in which
the redirectUrl? properties can be provided.

config.paymentOptionId The identi�er returned by Klarna’s messaging API or
Web SDK to support the preselection of payment
options within the Klarna Payments �ow. This identi�er
is required if Klarna is presented as more than one
payment option.

config.shoppingSessionId The identi�er returned by Klarna’s Web SDK which ties
a customer's activities together across multiple
services.

If Klarna’s Web SDK is integrated by the partner, this
identi�er must be mapped to the shoppingSessionId
returned by Klarna. Acquiring Partners must make this
value available to merchants, and allow merchants to
pass this through to Klarna at all interactions.

merchantReference (optional) Used for storing the shopper-facing transaction
number. It will be displayed to shoppers on the Klarna
app and other communications. It will also be included
in settlement reports for the purpose of reconciliation.

Con�dential and proprietary information 58

JavaScript

Parameter Definition

paymentReference (optional) For Distribution Partners: Reference to the payment
request which can be used by distribution partners for
the purpose of correlating your payment resource with
the Klarna Payment Request.

customer (optional) This represents who the customer is according to the
merchant. These data points may be used by Klarna to
simplify sign-up and during fraud assessment, they will
not be used for underwriting and will not be persisted
on created Payment Authorizations

shipping (optional) Shipping information for the purchase. This data is
used for fraud detection and shopper communication.
If the purchase contains multiple shipments with
different recipients, you must provide one shipping
object per shipment.

lineItems (optional) Line items describing the purchase, the total sum of
the line items must match the payment amount.

Consult the SDK reference for a complete description of the request body parameters

3.4. Handle the button click event.

When using the Klarna payment button, the initial payment request is passed in the click handler,
where you can modify the request and initiate it. Con�gurations available for the request are detailed
below.

klarnaPaymentButton.on("click", async (paymentRequest) => {
paymentRequest.initiate(
{
paymentAmount: 9999,
currency: "EUR",
config: {
redirectUrl:

"https://example.com?id={klarna.payment_request.id}andtoken={klarna.payment_request.paymen
t_confirmation_token}"

}
},
{
interactionMode: "DEVICE_BEST"

});
});

Upon being redirected, the shopper will enter Klarna's payment �ow. This �ow allows the shopper to
choose their payment method and input any necessary information. The process also may require
the shopper to log in to their Klarna account to proceed with the payment.

Con�dential and proprietary information 59

https://docs.klarna.com/websdk/typedocs/interfaces/payment.PaymentRequestData.html

⚠ Be mindful when sharing shopper data:
● The merchant is required to, while respecting the privacy of their shoppers, send all

applicable shopper data points when initiating the payment request which is then pre�lled
in the funnel.

● The merchant is responsible for disclosing how and when personal information is shared
with their partners

● Returning shoppers checking out from a device where they are logged-in would skip the
authentication step in the funnel.

Step 4: Monitor payment state and retrieve payment confirmation token
During the checkout process, the payment request will transition to various states. Find below an
overview of the possible transaction states together with a transition diagram:

Payment request state

State Definition

CREATED Payment request has been created client side, can
freely be modi�ed (Not valid for server side integration)

SUBMITTED Payment request has been submitted to the backend
and ready to be initiated or prepared.
Request can be modi�ed but must be synchronized

IN_PROGRESS The payment �ow is in progress (shopper is inside the
purchase �ow)

PREPARED The payment request is prepared, but not yet �nalized.
This state can be triggered when using the prepare()
method in the context of a multi-step checkout It must
be �nalized by calling initiate()

PENDING_CONFIRMATION The payment �ow has successfully been completed by
the shopper and is pending �nal con�rmation to
complete the request.

EXPIRED (�nal) The payment request has expired(t≥48h).

AUTHORIZED (�nal) The payment request is authorized and a transaction
has been created.

CANCELED (�nal) The payment request has been canceled by the
integrator. The payment_confirmation_token can
only be CANCELED until the request is AUTHORIZED. After
authorization, the cancellation is no longer possible.

Con�dential and proprietary information 60

Unset

Payment request state diagram

Once the shopper has successfully completed the payment on the purchase �ow, the payment
request will reach the state PENDING_CONFIRMATION and a payment_confirmation_token will be
returned by Klarna. This is a unique identi�er which is necessary to securely perform a server-side
con�rmation of the payment request.

There are several ways to monitor the payment state and retrieve the
payment_confirmation_token. It is important to ensure you handle errors and fail gracefully
regardless of the outcome of the transaction, see here for more information on integration resilience.

1. Subscribing to webhook events

To con�gure your webhooks please follow the guidelines on this section.

The webhook triggered when the payment request reaches the state PENDING_CONFIRMATION will
contain the payment_confirmation_token.

Request example:

{
"metadata": {

"event_id": "e911ddab-f2c9-4d4c-aa2e-1954b290a91a",
"event_type": "payment.request.state-change.pending-confirmation",
"event_version": "v1",
"occurred_at": "2024-05-27T14:41:30Z",
"account_id":

"krn:partner:global:account:test:d6312901-1056-4231-8adb-d5abea7f3f8c",
"product_instance_id":

"krn:partner:global:payment-product:test:54f2ac72-2839-4004-9560-a8dcd128868c",

Con�dential and proprietary information 61

"webhook_id":
"krn:partner:global:notification:webhook:96420b72-8c4c-4554-9b97-dcb67272d513",

"live": false
},
"payload": {

"payment_request_id":
"krn:payment:eu1:request:efb8cf04-07f8-6dad-a49a-c6b6048b25e3",

"payment_reference": "09e7a0f1-4207-4abe-b472-64559b14cc80",
"merchant_reference": "e60fd9e1-f1a3-4762-9555-e9aa5169cec5",
"state": "PENDING_CONFIRMATION",
"previous_state": "IN_PROGRESS",
"state_expires_at": "2024-05-27T15:41:30Z",
"expires_at": "2024-05-29T14:40:58Z",
"created_at": "2024-05-27T14:40:58Z",
"updated_at": "2024-05-27T14:41:30Z",
"payment_confirmation_token":

"krn:payment:eu1:confirmation-token:2db97a21-6706-6f0e-89ac-faf493be15ae"
}

}

The content of the payload{} will slightly differ depending on the payment request state.

Consult the API reference for a complete description of the body parameters.

2. Client-side payment request state updates

The on(event, callback): voidmethod in the Klarna SDK is designed to help you to ef�ciently
manage payment request state transitions. By registering an event handler, you can respond
dynamically to updates related to the ongoing payment request. It is important to note that the event
handler may be triggered even if there is no state transition.

When involved in a redirection �ow, the update handler activates once your page has loaded. This
feature ensures that all pending updates are handled immediately upon registration of the event
handler, eliminating the need for polling. This is particularly useful for maintaining smooth and
responsive payment processing work�ows.

Additionally, the PaymentRequest provides access to various properties of the ongoing payment
request. This access allows developers to handle payment requests with greater precision and
awareness of the transaction's current state:

Parameter Type Definition

paymentRequestId String Unique identi�er of this payment request

paymentRequest Object The context that was authorized by this payment request. This is always
identical to the input given by the merchant (paymentRequestData)

Con�dential and proprietary information 62

https://docs.klarna.com/api/kn/klarna-management-api/klarna-management-api_release/3/#tag/Webhooks

JavaScript

Unset

state Enum Current state of the payment request

stateContext Object State speci�c context for the ongoing state. The paymentConfirmationToken
will be stored in this object once the payment request reaches the state
PENDING_CONFIRMATION

To implement this method, follow these steps:

● De�ne your callback function that will handle speci�c events related to payment requests.
● Register this callback function using the on(event, callback)method.

Example:

klarna.Payment.on('update', (paymentRequest) => {
console.log('Payment request state updated: ', paymentRequest.state)

})

3. Cancel the payment request

A payment request is open for 48h by default. Klarna recommends you to proactively close payment
requests which did not result in successful transactions or where your session timeout is less than
48h. To match the default timeout window of your checkout you can trigger a DELETE request to
/v1/accounts/{account_id}/payment/requests/{payment_request_id}.

The paymentRequestId of the ongoing payment request would �rst need to be retrieved client-side
and sent to the back-end where the cancellation can be triggered.

Response example (State):Canceled

{
"payment_request_id": "krn:payment:eu1:request:552603c0-fe8b-4ab1-aacb-41d55fafbdb4",
"state": "CANCELED",
"previous_state": "SUBMITTED",
"state_expires_at": "2024-01-01T15:00:00Z",
"state_context": {},
"expires_at": "2024-01-02T13:00:00Z",
"created_at": "2024-01-01T12:00:00Z",
"updated_at": "2024-01-01T13:00:00Z",
"payment_request": {
"currency": "USD",
"payment_amount": 1000,
"config": {
"redirect_url":

"https://partner.example/klarna-redirect?id={klarna.payment_request.id}"
}

Con�dential and proprietary information 63

https://docs.klarna.com/api/kn/klarna-product-api-payment/klarna-product-api-payment_release/3/#operation/cancelPaymentRequest

Unset

}
}

4. Handling the redirect URL

If placeholders were implemented in the redirect URL as described in section 3.3, it’s important to
handle the details returned to ensure that the transaction information is processed correctly on your
end. Once the shopper is redirected back to your website, the URL will contain the actual values
replacing the placeholders. For example:

https://partner.example/klarna-redirect?confirmation_token=krn:payment:eu1:conf
irmation-token:51bbf3db-940e-5cb3-9003-381f0cd731b7&request_id=bebeabea-5651-67
a4-a843-106cc3c9616a&state=AUTHORIZED&reference=partner-payment-reference-12345

Parse the URL parameters to extract the transaction details, and pass these details to your systems
accordingly. Validate that these parameters match your expectations, and the other methods
through which this information is communicated. If desired, move to Step 5: Con�rm Payment
request server side.

Consult the API reference for a complete description of the request body parameters.

Step 5: Confirm Payment request server side
To con�rm a payment request, you must provide the payment confirmation token that is returned
after a successful payment �ow.

⚠ The payment con�rmation token is valid for 60 minutes. You must con�rm the payment within
the time limit otherwise the transaction will be lost.

Ensure the payment is con�rmed and the transaction authorized through a POST request to
/v1/accounts/{account_id}/payment/confirmation-tokens/{payment_confirmation_to
ken}/confirm.

Mandatory Request
Parameter

Definition

currency The currency in which the transaction is made.

payment_amount The total amount to be charged, matching the sum of all line item
amounts if any are provided.

Con�dential and proprietary information 64

https://docs.klarna.com/api/kn/klarna-product-api-payment/klarna-product-api-payment_release/3/#operation/readPaymentRequest
https://docs.klarna.com/api/kn/klarna-product-api-payment/klarna-product-api-payment_release/3/#operation/confirmPaymentRequest
https://docs.klarna.com/api/kn/klarna-product-api-payment/klarna-product-api-payment_release/3/#operation/confirmPaymentRequest

Unset

Unset

Additional parameters can be submitted in the request. Consult the API reference for a complete
description of the request body parameters.

This endpoint is idempotent, meaning the same con�rmation request can be called multiple times
with the same con�rmation token, and it will return the same response each time. This ensures that
the payment con�rmation process is reliable and repeatable without any risk of double processing.
More information on implementing Idempotency available here.

Request example:

{
"currency": "EUR",
"payment_amount": 1000

}

When the payment request has been successfully con�rmed, Klarna will return an HTTP 200 Ok
response and the response body will contain the payment_transaction_id which you will need to
perform all payment transaction management.

Response example:

{
"state_context": {

"payment_transaction_id": "6c583364-786d-46c6-b5a7-0c8c88884038",
"payment_pricing": {

"rate": {
"fixed": 0,
"variable": 1700000

}
},
"payment_request": {

"currency": "SEK",
"payment_amount": 1000,
"config": {

"redirect_url":"https://partner.example/klarna-redirect?id={klarna.payment_request
.id}"
}

},
"previous_state": "PENDING_CONFIRMATION",
"payment_request_id": "krn:payment:eu1:request:bebeabea-5651-67a4-a843-106cc3c9616a",
"state": "AUTHORIZED",
"state_expires_at": "2024-05-29T09:37:36.849370204Z",
"expires_at": "2024-05-29T09:37:36.849370204Z",
"created_at": "2024-05-27T09:37:36.849370204Z",
"updated_at": "2024-05-27T09:37:36.849370204Z"

Con�dential and proprietary information 65

https://partner.example/klarna-redirect?id=%7Bklarna.payment_request.id
https://partner.example/klarna-redirect?id=%7Bklarna.payment_request.id

}

Consult theAPI reference for a complete description of the response body.

Alternative integration: Payment request initiated server-side
Overview

Use our server-side integration via REST API when not owning frontend assets in the payment �ow.

Below is an illustration of the integration �ow:

Step 1: Display Klarna payment badge, descriptor, and checkout placement
With this alternative integration path, the payment method selector is owned by the Merchants
which are redirecting the shoppers to a payment URL provided by the PSPs.

In a context of a Klarna integration, Merchants will have to build their payment method selector
directly with the assets provided by Klarna

Con�dential and proprietary information 66

https://docs.klarna.com/api/kn/klarna-product-api-payment/klarna-product-api-payment_release/3/#operation/confirmPaymentRequest

1.1: Get content for Klarna’s payment badge, descriptor, and subheaders

1 Payment descriptor
High-level call to action.
Provided in Klarna
response.

2 Payment subheader
More detailed breakdown
of the value of the option
presented. Provided in
Klarna response.

3 Klarna badge
Klarna logo. Provided in
Klarna response.

By using the getPlacementContent()method of klarna.js’ Messaging package it is possible to
retrieve information about descriptors, subheaders and the Klarna badge.

Release notes

📅 The getPlacementContent()method will be made available in a future release.

To achieve a �exible and global solution that allows merchants to choose their preferred
presentation method, as per Enhance the shopping experience, we require you to allow your
merchants to pass themessage_preferenceparameter at checkout. If no preference is provided by
your merchant, the default behavior is to display all available options separately.

Additionally, allow the passing of the shopper_session_id at this point to tie the session to any
existing client-side sessions which may have been initiated by the merchant.

In response to the getPlacementContextmethod, you’ll receive a payment_option_id. This must
be returned to Klarna in the creation of a payment request unless Klarna is either being:

● Presented as a single payment option (using message_preference=Klarna) or
● Presented as a static payment method

If this is not done, the selection made within the merchant checkout will not be honored by Klarna
and the customer may have to re-select their chosen payment method.

Parameters

Parameter Definition

locale Locale to use for returned content.

BCP 47 (concatenation of language code (ISO 639�1
format) + "-" + country code (ISO 3166�1 alpha-2 format))

Con�dential and proprietary information 67

JavaScript

Parameter Definition

Example: en-US

currency (optional) The purchase currency of the transaction. Formatted
according to ISO 4217 standard, e.g. USD, EUR, SEK, GBP,
etc.
If not provided, default currency for the locale is used.

payment_amount Total amount of a one-off purchase, including tax and
any available discounts. The value should be in
non-negative minor units. Eg: 25 Dollars should be 2500.

message_preference
(optional)

Indicates the preferred payment option.
Enum:

● PAY_NOW
● PAY_LATER
● PAY_OVER_TIME
● KLARNA

Example

Possible scenarios for message_preference parameter:

● If no message_preference is speci�ed, the messaging copy for the all-option approach
will be returned by default (default and recommended solution)

● If message_preference=PAY_LATER is speci�ed, Klarna will return the messaging copy
for the Two-option approachwith Pay later as the promoted payment option. This will also
apply to the other payment options.

● If message_preference=KLARNA is speci�ed, Klarna will return the messaging copy for
the Single-option approach

Find more information about available approaches here.

Request example:

const descriptor = klarna.Messaging.getPlacementContent({
key: "payment-descriptors",
payment_amount: 20000,
locale: "fr-CA"

})

In the response, Klarna will return an array of payment descriptors listing the content to be displayed
(PAYMENT_DESCRIPTOR, PAYMENT_DESCRIPTOR_SUBHEADER, KLARNA_BADGE), indexed per
payment_option_id.

Con�dential and proprietary information 68

Unset

The paymentOptionId is a parameter that should be used when initiating the payment request, as it
allows you, as the acquiring partner, to preselect the corresponding payment option when the
shopper enters the purchase �ow.

Release notes

📅 PAYMENT_DESCRIPTOR_SUBHEADER will be added in a later release.

Response example:

{
"paymentDescriptors": [
{
"paymentOptionId": "123xyz",
"content": {
"nodes": [
{
"name": "PAYMENT_DESCRIPTOR",
"type": "TEXT",
"value": "Pay now"

},
{
"name": "PAYMENT_DESCRIPTOR_SUBHEADER",
"type": "TEXT",
"value": "Pay in full today"

},
{
"name": "KLARNA_BADGE",
"type": "IMAGE",
"url": "...",
"label": "Klarna logo"

}
]

}
},
{
"paymentOptionId": "123xyz",
"content": {
"nodes": [
{
"name": "PAYMENT_DESCRIPTOR",
"type": "TEXT",
"value": "Pay in 4-interest-free"

},
{
"name": "PAYMENT_DESCRIPTOR_SUBHEADER",
"type": "TEXT",
"value": "Pay in 4-interest-free payments of $25.00"

},
{
"name": "KLARNA_BADGE",

Con�dential and proprietary information 69

"type": "IMAGE",
"url": "...",
"label": "Klarna logo"

}
]

}
},
{
"paymentOptionId": "123xyz",
"content": {
"nodes": [
{
"name": "PAYMENT_DESCRIPTOR",
"type": "TEXT",
"value": "Pay over time"

},
{
"name": "PAYMENT_DESCRIPTOR_SUBHEADER",
"type": "TEXT",
"value": "Split the cost into smaller payments over 6-24 months"

},
{
"name": "KLARNA_BADGE",
"type": "IMAGE",
"url": "...",
"label": "Klarna logo"

}
]

}
}

]
}

Option 2: Use the Partner Product Messaging API

Use the GET /v1/accounts/{account_id}/payment/messaging/payment-descriptors to retrieve the
payment descriptors from Klarna.

payment_amount and locale are mandatory query parameters for this api call.
currency and message_preference are optional query parameters and the logic here is the same
as the one explained for the getPlacementContent()

Query Parameter Definition

locale Locale to use for returned content.

BCP 47 (concatenation of language code (ISO 639�1
format) + "-" + country code (ISO 3166�1 alpha-2 format))

Con�dential and proprietary information 70

Unset

Query Parameter Definition

Example: en-US

currency (optional) The purchase currency of the transaction. Formatted
according to ISO 4217 standard, e.g. USD, EUR, SEK, GBP,
etc.
If not provided, default currency for the locale is used.

payment_amount Total amount of a one-off purchase, including tax and
any available discounts. The value should be in
non-negative minor units. Eg: 25 Dollars should be 2500.

message_preference
(optional)

Indicates the preferred payment option.
Enum:

● PAY_NOW
● PAY_LATER
● PAY_OVER_TIME
● KLARNA

Example

Possible scenarios for message_preference parameter:

● If no message_preference is speci�ed, the messaging copy for the all-option approach
will be returned by default (default and recommended solution)

● If message_preference=PAY_LATER is speci�ed, Klarna will return the messaging copy
for the Two-option approachwith Pay later as the promoted payment option. This will also
apply to the other payment options.

● If message_preference=KLARNA is speci�ed, Klarna will return the messaging copy for
the Single-option approach

Check all approaches here.

In the response, Klarna will return an array of payment descriptors listing the content to be displayed
(PAYMENT_DESCRIPTOR, PAYMENT_DESCRIPTOR_SUBHEADER, KLARNA_BADGE), indexed per
payment_option_id.

The payment_option_id is a parameter that should be used when initiating the payment request,
as it allows you, as the acquiring partner, to preselect the corresponding payment option when the
shopper enters the purchase �ow.

{
"payment_descriptors": [
{
"payment_option_id": "edwqqr32dsad2dsefrassa",
"content": {

Con�dential and proprietary information 71

https://docs.google.com/document/d/1a3QWQw2k79ZcZX09EQe0oZb1LuqI8TCottZL9VW2QqA/edit#heading=h.4z9hom3us2pp

"nodes": [
{
"name": "PAYMENT_DESCRIPTOR",
"type": "TEXT",
"value": "Financing"

},
{
"name": "PAYMENT_DESCRIPTOR_SUBHEADER",
"type": "TEXT",
"value": "Spread the cost over smaller montly installments"

},
{
"name": "KLARNA_BADGE",
"alt": "Klarna",
"url": "https://osm.klarnaservices.com/images/logo_black_v2.svg",
"type": "IMAGE"

}
]

}
},
{
"payment_option_id": "czxsa4324132dsaddsxcxzzxs",
"content": {
"nodes": [
{
"name": "PAYMENT_DESCRIPTOR",
"type": "TEXT",
"value": "All options with Klarna"

},
{
"name": "PAYMENT_DESCRIPTOR_SUBHEADER",
"type": "TEXT",
"value": "Pay now, in 30 days or with Financing"

},
{
"name": "KLARNA_BADGE",
"alt": "Klarna",
"url": "https://osm.klarnaservices.com/images/logo_black_v2.svg",
"type": "IMAGE"

}
]

}
}

]
}

Option 3: Static assets

If relying on external dependencies is not feasible when building the checkout, or if you, the
acquiring partner, do not own the client-side presentation of Klarna and cannot accept the
payment_option_id, all assets (such as payment descriptors, payment subheaders, and the Klarna

Con�dential and proprietary information 72

JavaScript

badge) are accessible as static content on docs.klarna.com. Klarna requires that up-to-date branding
be in place in all checkouts, and it is the responsibility of the integrator to ensure that static assets
remain current.

When using static assets, only the "one option" payment presentation will be available. Attempting to
present multiple options will add friction, as any preselection made in your checkout will not persist
within the Klarna session.

⚠Klarna may periodically update these assets, in which case it is the integrators responsibility to
ensure they are using the latest version.

1.2: Display the Klarna checkout placement

The messaging package contains a custom element that can resolve into a collection of what we
denote “placements''. These placements represent a form of visual text or imagery that represents
the Klarna brand.

Checkout Placement

Displayed when the customer selects
a Klarna payment option, this section
includes a buyer protection USP and a
"learn more" link.

There are three ways to display Klarna placement at the checkout:

Option 1: Use the SDK public endpoint in the messaging package:

var klarnaMessaging = klarna.Messaging.placement({
key: "checkout",
amount: 10000,
currency: "USD",
locale: "en-US"

}).mount("#checkout");

Option 2: Use the Partner Product Messaging API

Use the GET /v1/accounts/{account_id}/payment/messaging/checkout and specify a locale and
payment_amount as query parameter.

The response will contain the necessary element for Partners to create the checkout placement
themselves.

Con�dential and proprietary information 73

https://docs.klarna.com

Unset

Unset

{
"content": {
"nodes": [
{
"name": "TEXT_MAIN",
"type": "TEXT",
"value": "Enjoy Buyer Protection with Klarna"

},
{
"name": "ACTION_LEARN_MORE",
"url": "url_t",
"type": "ACTION",
"label": "See payment options"

},
{
"name": "ACTION_OPEN_BUYERS_PROTECTION_LINK",
"url": "url_t",
"type": "ACTION",
"label": "Buyer Protection"

},
{
"name": "KLARNA_BADGE",
"alt": "Klarna",
"url": "url_tg",
"type": "IMAGE"

}
]

}
}

Option 3: Use the custom web component by invoking the following snippet:

<klarna-placement
data-theme="dark"
data-message-prefix="or"
data-locale="en-GB"
data-key="checkout"
data-purchase-amount="24000.0"
data-paymentOptionId="xxxxxx"

></klarna-placement>

Con�dential and proprietary information 74

Unset

Step 2: Create a payment request server-side

To start the purchase �ow a payment request must be created. This request ensures that all
necessary information is provided for a successful transaction. To start the process send a POST
request to /v1/accounts/{account_id}/payment/requests.

The following data points are required for a successful request:

Parameter Definition Example

currency The currency in which the transaction is
made. EUR

payment_amount
The total amount to be charged, matching
the sum of all line item amounts if any are
provided.

1000

config.payment_optio
n_id

Speci�es a payment option to be
pre-selected in the purchase �ow. czxsa4324132dsaddsxcxzzxs

config.shopping_sess
ion_token Unique identi�er for a shopper session. krn:shopping:eu1:session:...

config.redirect_url
The URL provided by the integrator where
the shopper will be redirected after a
successful purchase.

https://klarna.com?authorization_token={klarna.p
ayment_request.payment_con�rmation_token}and
payment_request_state={klarna.payment_request.
state}

Consult the API reference for a complete description of the request body parameters.

Request example:

{
"currency": "EUR",
"payment_amount": 1000,
"config": {

"payment_option_id":"czxsa4324132dsaddsxcxzzxs",
"shopping_session_token": "krn:shopping:eu1:session:...",
"redirect_url":

"https://partner.example/klarna-redirect?id={klarna.payment_request.id}"
}

}

When the payment request has been successfully created, Klarna will return an HTTP 201 Created.
The response body will contain the payment_request_id as well as the
state_context.distribution.url to which the shopper should be redirected to.

Response example:

Con�dential and proprietary information 75

https://docs.klarna.com/api/kn/klarna-product-api-payment/klarna-product-api-payment_release/3/#operation/createPaymentRequest
https://docs.klarna.com/api/kn/klarna-product-api-payment/klarna-product-api-payment_release/3/#operation/createPaymentRequest

Unset

Unset

{
"state_context": {

"distribution": {
"url":

"https://pay.test.klarna.com/eu/requests/b9bacf30�3619�60e5-bdcb-b0ad687d550b/start"
}

},
"payment_request": {

"currency": "EUR",
"payment_amount": 1000,
"config": {

"redirect_url":"https://partner.example/klarna-redirect?id={klarna.payment_request
.id}"
}

"payment_request_id": "krn:payment:eu1:request:b9bacf30�3619�60e5-bdcb-b0ad687d550b",
"state": "SUBMITTED",
"state_expires_at": "2024�05�29T08�33�10.088164687Z",
"expires_at": "2024�05�29T08�33�10.088164687Z",
"created_at": "2024�05�27T08�33�10.088164687Z",
"updated_at": "2024�05�27T08�33�10.088164687Z"

}

Step 3: Redirect the shopper to Klarna purchase flow
After creating a payment request, the merchant should redirect the shopper to the start link
provided in the response. This link is located at state_context.distribution.url in the response
of the Step 2: Create a payment request server-side.

Shopping journey

Upon being redirected, the shopper will enter Klarna's payment �ow. This �ow allows the shopper to
choose their payment method and input any necessary information. The process also requires the
shopper to log in to their Klarna account, if needed, to proceed with the payment.

After completing these steps, the shopper is redirected to the URL speci�ed in the
config.redirect_url. This URL is provided in the initial payment request and ensures the
shopper returns to the merchant's site after a successful transaction.

"config": {
"redirect_url":

"https://merchant.com?authorization_token={klarna.payment_request.payment_confirmation_tok
en}"
}

Con�dential and proprietary information 76

https://partner.example/klarna-redirect?id=%7Bklarna.payment_request.id
https://partner.example/klarna-redirect?id=%7Bklarna.payment_request.id

Step 4: Monitor payment state and retrieve payment confirmation token
This section provides technical details on how to obtain the con�rmation token from Klarna in the
context of server-side only integrations. It also covers monitoring payment request states, relevant
data elements, and properly closing the payment request.

The payment request will transition to various states during the Klarna payment �ow, you will �nd
below an overview of the possible payment request states together with a state transition diagram.

Payment request state

State Definition

SUBMITTED Payment request has been submitted
to Klarna’s backend and ready to be
initiated, request can be modi�ed but
must be synchronized

IN_PROGRESS The payment �ow is in progress

PENDING_CONFIRMATION The payment �ow has successfully
been completed by the shopper and is
pending �nal con�rmation to complete
the payment request.

EXPIRED The payment request has expired
(t≥48h). This is a �nal state.

AUTHORIZED The payment request is authorized -
and a payment transaction has been
created. This is a �nal state.

CANCELED The payment request has been
canceled by the integrator. This is a
�nal state.

Con�dential and proprietary information 77

Unset

Payment request state diagram

Once the shopper has successfully completed the payment in the purchase �ow, the payment
request will reach the state PENDING_CONFIRMATION and a payment_confirmation_token will be
returned by Klarna. This is a unique identi�er which is necessary to securely perform a server-side
con�rmation of the payment request.

There are several ways to monitor the payment state and retrieve the
payment_confirmation_token. It is important to ensure you handle errors and fail gracefully
regardless of the outcome of the transaction, for more information on integration resilience, see
Integration resilience.

1. Subscribing to Webhook Events

To con�gure webhooks for your merchant accounts please follow the guidelines on this section.

The webhook triggered when the payment request reaches the state PENDING_CONFIRMATION will
contain the payment_confirmation_token.

Example:

{
"metadata": {
"event_type": "payment.request.state-change.pending-confirmation",
"event_id": "d9f9b1a0�5b1a-4b0e-9b0a-9e9b1a0d5b1a",
"event_version": "v1",
"occurred_at": "2024�01�01T12�00�00Z",
"correlation_id": "2d1557e8�17c3�466c-924a-bbc3e91c2a02",
"account_id": "krn:partner:account:206bbb83�9b6e-46fa-940d-337153c04a58",

Con�dential and proprietary information 78

JavaScript

"product_instance_id":
"krn:partner:product:payment:ad71bc48�8a07�4919-a2c1�103dba3fc918",

"webhook_id":
"krn:partner:global:notification:webhook:120e5b7e-abcd-4def-8a90-dca726e639b5",

"live": true
},
"payload": {
"payment_request_id": "krn:payment:eu1:request:552603c0-fe8b-4ab1-aacb-41d55fafbdb4",
"payment_reference": "partner-payref-1234",
"merchant_reference": "order-5678",
"state": "PENDING_CONFIRMATION",
"previous_state": "IN_PROGRESS",
"payment_confirmation_token":

"krn:payment:eu1:confirmation-token:e15432a5-ebcc-45bc-934c-e61399db597b"
}

}

The content of the payload{} will slightly differ depending on the payment request state.

Consult the API reference for a complete description of the webhook payload.

2. Placeholder in the redirect_url

The redirect_url directs the shopper back to the partners website to the prede�ned url after a
successful or abandoned authorization. By incorporating placeholders into the URL, Klarna can
dynamically insert relevant transaction information, ensuring the URL contains all necessary details
for processing.

To ensure security and integrity, the server-side con�rmation payment request call is required to
complete an order. Klarna recommends all partners verify data received via redirect against that
received via webhooks to prevent token misuse. Tokens passed via the redirect_url are only valid for
the account that places the order, preventing hijacking.

Redirect URL example:

config: {
redirectUrl:

"https://partner.example/klarna-redirect?confirmation_token={klarna.payment_request.paymen
t_confirmation_token}andrequest_id={klarna.payment_request.id}andstate={klarna.payment_req
uest.state}andreference={klarna.payment_request.payment_reference}"
}

Where:

Placeholder Example

Con�dential and proprietary information 79

https://docs.klarna.com/api/kn/klarna-management-api/klarna-management-api_release/3/#tag/Webhooks

Unset

Unset

Payment con�rmation token cd227fcd-21ee-4903�89ed-bd694144009e

payment request ID bebeabea-5651�67a4-a843�106cc3c9616a

state AUTHORIZED

payment reference partner-payment-reference-12345

https://partner.example/klarna-redirect?confirmation_token=cd227fcd-21ee-4903�89ed-bd69414
4009eandrequest_id=bebeabea-5651�67a4-a843�106cc3c9616aandstate=AUTHORIZEDandreference=par
tner-payment-reference-12345

These placeholders ensure that the redirect URL dynamically includes all necessary transaction
details. Klarna will replace these placeholders with actual values before redirection, allowing
integrators to seamlessly handle the redirection process and ensure that all essential information is
available for transaction processing.

{klarna.payment_request.id} - Klarna Payment Request identifier.
{klarna.payment_request.state} - State of the payment request - may be used as a hint.
{klarna.payment_request.payment_confirmation_token} - The confirmation token.
{klarna.payment_request.payment_reference} - Your reference to the payment request.
{klarna.payment_request.referer} - URL where the authorization started.

3. Read the Payment Request

Another way to obtain the con�rmation token is by reading the payment request endpoint.

Using the read payment request endpoint to retrieve the con�rmation token provides an alternative
method for integrators to ensure they have the necessary token to complete the transaction. This
method can be particularly useful for verifying the token or obtaining it after the initial redirection
�ow.

By leveraging both the redirect URL placeholders and the read payment request endpoint,
merchants can ensure they have all the necessary tools to manage and con�rm payments ef�ciently.

Fetch the token directly by sending a GET request to
/v1/payment/{account_id}/requests/{payment_request_id}.

Response example (State)Pending confirmation

Con�dential and proprietary information 80

https://docs.klarna.com/api/kn/klarna-product-api-payment/klarna-product-api-payment_release/3/#operation/readPaymentRequest

Unset

Unset

{
"payment_request_id": "krn:payment:eu1:request:552603c0-fe8b-4ab1-aacb-41d55fafbdb4",
"state": "PENDING_CONFIRMATION",
"previous_state": "PREPARED",
"state_expires_at": "2024�01�01T15�00�00Z",
"state_context": {
"payment_confirmation_token":

"krn:payment:eu1:confirmation-token:e15432a5-ebcc-45bc-934c-e61399db597b"
},
"expires_at": "2024�01�02T13�00�00Z",
"created_at": "2024�01�01T12�00�00Z",
"updated_at": "2024�01�01T13�00�00Z",
"payment_request": {
"currency": "USD",
"payment_amount": 1000,
"config": {
"redirect_url":

"https://partner.example/klarna-redirect?id={klarna.payment_request.id}"
}

}
}

Cancel the payment request

⚠A payment request is open for 48h, this period is not customizable. If you wish to match the
length of a payment request, the payment request must be canceled via this request.

Klarna recommends you to proactively close payment requests which do not result in successful
transactions and align this with the default timeout of your checkout process to avoid having
shoppers going back to the Klarna Purchase Flow after your own checkout window has expired.

To match the default timeout window of your checkout you can trigger a DELETE request to
/v1/accounts/{account_id}/payment/requests/{payment_request_id}.

Response example (State)Canceled

{
"payment_request_id": "krn:payment:eu1:request:552603c0-fe8b-4ab1-aacb-41d55fafbdb4",
"state": "CANCELED",
"previous_state": "SUBMITTED",
"state_expires_at": "2024�01�01T15�00�00Z",
"state_context": {},
"expires_at": "2024�01�02T13�00�00Z",
"created_at": "2024�01�01T12�00�00Z",
"updated_at": "2024�01�01T13�00�00Z",
"payment_request": {
"currency": "USD",

Con�dential and proprietary information 81

https://docs.klarna.com/api/kn/klarna-product-api-payment/klarna-product-api-payment_release/3/#operation/cancelPaymentRequest

Unset

"payment_amount": 1000,
"config": {
"redirect_url":

"https://partner.example/klarna-redirect?id={klarna.payment_request.id}"
}

}
}

Consult the API reference for a complete description of the request body parameters.

Step 5: Confirm Payment request server side

To con�rm a payment request, you must provide the payment confirmation token that is returned
after a successful payment �ow.

⚠ The payment con�rmation token is valid for 60 minutes. You must con�rm the payment within
the time limit otherwise this would result in a lost transaction.

Ensure the payment is con�rmed and the transaction authorized through a POST request to
/v1/accounts/{account_id}/confirmation-tokens/{payment_confirmation_token}/con
firm.

Mandatory Request
Parameter

Definition

currency The currency in which the transaction is made.

payment_amount The total amount to be charged, matching the sum of all line
item amounts if any are provided.

Additional parameters can be submitted in the request. Consult the API reference for a complete
description of the request body parameters.

This endpoint is idempotent, the same con�rmation request can be called multiple times with the
same con�rmation token, and it will return the same response each time. This ensures that the
payment con�rmation process is reliable and repeatable without any risk of double processing. More
information on idempotency is available in Idempotency.

Request example:

{
"currency": "EUR",
"payment_amount": 1000

Con�dential and proprietary information 82

https://docs.klarna.com/api/kn/klarna-product-api-payment/#operation/cancelPaymentRequestConfirmation
https://docs.klarna.com/api/kn/klarna-product-api-payment/klarna-product-api-payment_release/3/#operation/confirmPaymentRequest
https://docs.klarna.com/api/kn/klarna-product-api-payment/klarna-product-api-payment_release/3/#operation/confirmPaymentRequest

Unset

}

When the payment request has been successfully con�rmed, Klarna will return an HTTP 200 Ok
response and the response body will contain the payment_transaction_id which you will need to
perform all payment transaction management.

Response example:

{
"state_context": {

"payment_transaction_id": "6c583364-786d-46c6-b5a7-0c8c88884038",
"payment_pricing": {

"rate": {
"fixed": 0,
"variable": 1700000

} }
},
"payment_request": {

"currency": "SEK",
"payment_amount": 1000,
"config": {

"redirect_url":"https://partner.example/klarna-redirect?id={klarna.payment_request
.id}"
}

},
"previous_state": "PENDING_CONFIRMATION",
"payment_request_id": "krn:payment:eu1:request:bebeabea-5651-67a4-a843-106cc3c9616a",
"state": "AUTHORIZED",
"state_expires_at": "2024-05-29T09:37:36.849370204Z",
"expires_at": "2024-05-29T09:37:36.849370204Z",
"created_at": "2024-05-27T09:37:36.849370204Z",
"updated_at": "2024-05-27T09:37:36.849370204Z"

}

Consult the API reference for a complete description of the response body.

More payment use cases

Klarna supports all possible payment scenarios for your merchants, accommodating any type of
business, including those requiring subscriptions or on-demand solutions. Klarna’s omnichannel
solution gives your customers the same experience everywhere, online, in physical stores, and via
mobile apps.

● Update value of a product in the transaction: Detail how to update the payment request to a
SUBMITTED payment request to handle updates to an order.

● Subscriptions: enable subscription based use cases for your merchants.

Con�dential and proprietary information 83

https://partner.example/klarna-redirect?id=%7Bklarna.payment_request.id
https://partner.example/klarna-redirect?id=%7Bklarna.payment_request.id
https://docs.klarna.com/api/kn/klarna-product-api-payment/klarna-product-api-payment_release/3/#operation/confirmPaymentRequest

JavaScript

JavaScript

● Mixed payments: enable baskets that include both types of payments one-time and
recurrent/token creation.

● On-demand transactions: enable on-demand transactions and micropayments in your
merchants payment �ow.

● Mobile app: enable Klarna payments in mobile apps.
● In-store: enable Klarna payments in your merchants physical stores.
● Special segments:enable Klarna for speci�c business models such as travel or digital

services such as gaming or others.

Updating an order

Server-side updates

Klarna allows you to update a payment request through a PATCH request to
/v1/accounts/{account_id}/payment/requests/{payment_request_id}.

⚠ This can only be performed when the payment request is in the SUBMITTED state.

This re striction ensures that the shopper is aware of any modi�cations to the payment request.

Consult the API reference for a complete description of the request body parameters.

Request example:

{
"payment_reference": "payment-reference-2024�05�27T12�50�42.677Z",
"merchant_reference": "merchant-reference-e9c9b713�651d-4f26-bc9d-cc573f616134",

}

Response example:

{
"state_context": {

"distribution": {
"url":

"https://pay.test.klarna.com/eu/requests/b9bacf30�3619�60e5-bdcb-b0ad687d550b/start"
}

},
"payment_reference": "payment-reference-2024�05�27T12�50�42.677Z",
"merchant_reference": "merchant-reference-e9c9b713�651d-4f26-bc9d-cc573f616134",
"payment_request": {

"currency": "EUR",
"payment_amount": 1000,
"config": {

Con�dential and proprietary information 84

https://docs.klarna.com/api/kn/klarna-product-api-payment/klarna-product-api-payment_release/3/#operation/updatePaymentRequest
https://docs.klarna.com/api/kn/klarna-product-api-payment/klarna-product-api-payment_release/3/#operation/updatePaymentRequest

JavaScript

JavaScript

"redirect_url":"https://partner.example/klarna-redirect?id={klarna.payment_request
.id}"
}

"payment_request_id": "krn:payment:eu1:request:b9bacf30�3619�60e5-bdcb-b0ad687d550b",
"state": "SUBMITTED",
"state_expires_at": "2024�05�29T08�33�10.088164687Z",
"expires_at": "2024�05�29T08�33�10.088164687Z",
"created_at": "2024�05�27T08�33�10.088164687Z",
"updated_at": "2024�05�27T08�33�10.088164687Z"

}

Client-side updates

Klarna.js allows updates to an ongoing payment request that has the SUBMITTED state through a
variety of different methods.

Request
Passing payment request data to the request()method updates the local state of the payment
request with the information passed.

try {
const paymentRequest = Klarna.Payment.request({

currency: 'EUR',
paymentAmount: 1000,
config: {

redirectUrl: 'https://example.com'
},

})
} catch (error) {

// Handle errors
}

If a payment request was created on the server-side using the same account as the client-side, you
can pass the existing payment_request_ID. If you provide new payment request data, it will overwrite
the original data from the server-side creation. If no new data is provided, the original server-side
data will be used.

Klarna.Payment.request('krn:payment:eu1:request:b9bacf30-3619-60e5-bdcb-b0ad687d550b')
.initiate()

Con�dential and proprietary information 85

https://partner.example/klarna-redirect?id=%7Bklarna.payment_request.id
https://partner.example/klarna-redirect?id=%7Bklarna.payment_request.id
https://example.com

JavaScript

JavaScript

Update
Calling update on an existing payment request will sync the payment request state to the backend as
well as update the local state.

try {
paymentRequest.update({

currency: 'EUR',
paymentAmount: 9000,
config: {

redirectUrl: 'https://example.com'
},

})
} catch (error) {

// Handle errors
}

Initiate
Passing payment request data to the initiate()method is also possible before initiating the
payment request for last minute modi�cations of the payment request such as shipping fees, tax
adjustments, or �nal additions to the cart . If the initiate()method is called without any
parameters, the local state of the payment request will be used to initiate the payment request.

try {
paymentRequest.initiate({

currency: 'EUR',
paymentAmount: 11000,
config: {

redirectUrl: 'https://example.com'
},

}, {
interactionMode: 'DEVICE_BEST'

})
} catch (error) {

// Handle errors
}

Klarna payment button cannot be initiated
This section continues from Initiate a payment request using the Klarna payment button, and is
meant to guide integrators through the necessary steps if the Klarna payment button is not an
available integration type.

Con�dential and proprietary information 86

https://example.com
https://example.com

JavaScript

JavaScript

JavaScript

1. Add a button to your page:

<button type="button" id="BUY">Buy</button>

2. Create the payment request :

Details on how to con�gure this request are outlined in 3.3. Prepare the button click event
con�guration.

const paymentRequest = klarna.Payment.request(
{
paymentAmount: 9999,
currency: "EUR",
config: {
redirectUrl:

"https://example.com?id={klarna.payment_request.id}andtoken={klarna.payment_request.paymen
t_confirmation_token}"

}
},
{
interactionMode: "DEVICE_BEST"

}
);

3. Initiate payment request when shopper clicks buy button:

var initiate = document.getElementById("BUY");

initiate.addEventListener("click", function (event) {
paymentRequest.initiate();

});

For details regarding next steps, continue with Step 4: Monitor payment state and retrieve payment
con�rmation token.

Consult thepayment flow section for an overview of the shopper journey.

Con�dential and proprietary information 87

Manage Klarna payment transaction
The Payment transaction API enables you to manage and orchestrate the entire lifecycle of a
payment, from the moment it's authorized to when it's utilized and beyond. This API allows you to
track payments, update details, manage �nancial transactions through captures, refunds and
generally keep everything running smoothly behind the scenes.

Payment transaction state definition

When managing payment transactions, it is crucial to understand the different states that a payment
can transition through during its lifecycle. Each state represents a speci�c phase in the payment
process, dictating what actions can be taken and what limitations are in place. Below, we provide
de�nitions for some key states encountered within the payment transaction API.

● Authorized: Identi�es a payment that has been authorized but is not yet fully captured. It is
waiting for further actions such as capture, refund, update or void.

● Expired: Indicates that the payment transaction has reached its lifespan without being
completed. A transaction expires if it is not fully captured within a set period of time, de�ned
in the partner's contract. An expired payment transaction transitions to the `CLOSED` state if
it is not reauthorized within 7 days from the expiry.

● Closed: Indicates that the authorization has reached its de�nitive conclusion, or end of life. In
this state, no further operations, including refunds, can be executed. Following are the
conditions for the transition:

○ Post Completed: A payment transaction in the Completed state reaches its end of life
after 3 years.

○ Post Expiry: The payment transaction transitions to this state if it hasn't been
completed and has surpassed the 7-day grace period following expiry.

● Completed: indicate a state where the payment transaction has been �nalized through a
funds transfer. In essence, a payment transaction is considered completed when any amount
is captured and no more authorized amount remains.

○ Fully captured: The funds corresponding to the full authorization amount have been
successfully captured.

○ Partially captured and expired:The payment transaction has been partially captured,
and the 7-day grace period has passed upon expiration. Any remaining authorization
is released, and the payment authorization is considered to be completed.

Con�dential and proprietary information 88

Read payment transaction
The API call is used to retrieve detailed information about a transaction through your system. When
the need arises to check the speci�cs of a transaction, this API call empowers you with essential
details such as the current state, authorized amount, currency, line items and shipping information.
This ensures that you have real-time access to crucial transaction information, enabling ef�cient
transaction management and customer service. The API's response allows you to stay updated on
the transaction status and take any necessary actions. Here are the actions you can take for
different states:

● Authorized: When a payment is in the AUTHORIZED state, the following actions can be taken:
capture, refund, update, and void.

● Expired: When a payment is in the EXPIRED state, the options are more limited:
○ Reauthorize: If within the 7-day grace period, you can reauthorize the payment to

extend its lifespan and allow for capture.
● Completed: When a payment is in the COMPLETED state, no further operations such as

captures can be performed, but refunds can still be executed.
● Closed: When a payment is in the CLOSED state, no further operations such as captures,

refunds, or voids can be performed. The transaction is considered �nalized and cannot be
reopened or modi�ed.

Consult the API reference for a complete description of the request body parameters.

Update Payment Transaction
The update payment transaction allows you to update the details of a transaction, speci�cally
focusing on the merchant references and tracking information.

● The shipment details may be updated to include delivery tracking immediately after
purchase, during capture, or even after capturing it. This improves the customer experience
and is strongly encouraged.

Con�dential and proprietary information 89

https://docs.klarna.com/api/kn/klarna-product-api-payment/klarna-product-api-payment_release/3/#operation/readPaymentTransaction

● If you require custom transaction IDs or need to adjust the default IDs provided by Klarna to
suit your internal processes, customizing the merchant reference is necessary. The
merchant_reference is used for storing the customer-facing transaction number and is
crucial for transaction tracking. This identi�er will be displayed to customers on the Klarna
app and other communications.

Consult the API reference for a complete description of the request body parameters.

Capture Payment Transaction
The capture payment transaction API is meant to be used once a transaction has been ful�lled,
which signi�es that the goods have been shipped to the customer. This API allows you to capture
either the entire payment amount or a partial amount, based on your speci�c needs.

● Ensure that the capture amount does not exceed the payment amount unless you have
reauthorized your payment transaction to a higher payment amount.

● Within the capture call, you can include changes to the line items. This is useful if a different
good with the same amount is shipped.

● Including the shipping info object is recommended for better tracking and record-keeping.

Consult the API reference for a complete description of the request body parameters.

Void payment transaction
The Void payment transaction call is used when customers opt to cancel a payment transaction. This
can be done before the transaction is fully captured. The authorized amount that has not been
captured will be released, and no further updates to the transaction will be allowed. This API call can
also be used to release the remaining authorization of an order and to signal that there is no
intention to perform further captures. When implementing the void call, please follow these
guidelines:

● Partial Captures: If the transaction already has some captures, only the uncaptured amount
will be voided.

● No Captures: If the transaction doesn’t have any captures, the entire amount will be voided.

Consult the API reference for a complete description of the request body parameters.

Refund payment capture
The refund capture call is utilized to initiate the refund process when customers return items they've
purchased. Note that this call is associated with a speci�c payment capture.

If in any situation you will have multiple captures on a transaction (for example split shipments),you
are required to implement this path.

Consult the API reference for a complete description of the request body parameters.

Con�dential and proprietary information 90

https://docs.klarna.com/api/kn/klarna-product-api-payment/klarna-product-api-payment_release/3/#operation/updatePaymentTransaction
https://docs.klarna.com/api/kn/klarna-product-api-payment/klarna-product-api-payment_release/3/#operation/capturePaymentTransaction
https://docs.klarna.com/api/kn/klarna-product-api-payment/klarna-product-api-payment_release/3/#operation/voidPaymentTransaction
https://docs.klarna.com/api/kn/klarna-product-api-payment/klarna-product-api-payment_release/3/#operation/refundPaymentCapture

Refund payment transaction
The refund transaction call is utilized to initiate the refund process against any arbitrary amount, up
to the total amount captured on an overall transaction.

⚠ If you are supporting scenarios involving multiple captures you must use the Refund payment
capture endpoint to refund captures individually.

Consult the API reference for a complete description of the request body parameters.

Re authorize a payment transaction
This operation allows you to obtain a new authorization with a new expiry date, providing additional
time to capture and ful�ll it. It can only be performed

● Before the payment transaction expires.
● Within 7 days after the expiry, you should aim to reauthorize before that time and before the

transaction is in a closed state.

During reauthorization, the payment amount, line items, and shipping address can be changed. A risk
assessment will be conducted for this request.

Release notes

📅 Re-authorize feature will be made available in a future release.

Con�dential and proprietary information 91

https://docs.klarna.com/api/kn/klarna-product-api-payment/klarna-product-api-payment_release/3/#operation/refundPaymentTransaction

Pricing and reconciliation

How pricing works

When a transaction is con�rmed, Klarna issues rate details based on the transaction speci�cs in a
"promise". This rate con�rmation appears in the confirm_payment request API response and is
provisional. The application of these fees depends on the number of captures and the captured
amount, as both variable and �xed fees are applied per capture.

The rate provided should not be shared with merchants as a �nal amount, as it is subject to
calculation based on captured amount and quantity, and is re�ective of your buy_rates as an
acquiring partner.

Should a “microtransaction cap” be applied to the transaction, the rate charged on the transaction
will have a maximum applied, based on the total value of the payment. In this case the rate will
re�ect this maximum amount. A microtransaction is de�ned within the pricing framework, and may
vary by country or MCC.

We advise you to use the rates provided in the con�rm payment request response for calculations
and refrain from storing these rates. Should retrieval of these rates be necessary, you can access
them using the GET request
/v1/accounts/{account_id}payment/requests/{payment_request_id}. To view the
broader rates across their pricing plan, you should utilize the GET read a price plan request. This
ensures accurate and up-to-date rate application in all transactions and calculations.

Release notes

📅 GET read a price plan request will be supported in future releases.

Definitions and Calculations
● Effective rates: These rates are linked to a speci�c price plan identi�ed by a price_plan_id.

Rate details for a price plan can be accessed through the Partner management API using this
ID. Effective rates consider factors like the purchase country, MCC code, sales channel
(in-store, online store), and payment program. The �xed and variable costs shared on
con�rmation are applied to a transaction on a per capture basis.

● Discounts and penalties: Discounts reduce transaction fees based on certain criteria or
promotions. Penalties are extra charges for non-compliance with terms or atypical
transaction patterns. The effective rate communicated accounts for any applied discounts or
penalties.

● Rate communication: Within the con�rm payment request response, rate details are
disclosed. The rate object shows the amounts calculated based on these details:

Con�dential and proprietary information 92

https://docs.klarna.com/api/kn/klarna-product-api-payment/klarna-product-api-payment_release/3/#operation/confirmPaymentRequest
https://docs.klarna.com/api/kn/klarna-product-api-payment/klarna-product-api-payment_release/3/#operation/readPaymentRequest
https://docs.klarna.com/api/kn/klarna-product-api-payment/klarna-product-api-payment_release/3/#operation/readPaymentRequest
https://docs.klarna.com/api/kn/klarna-product-api-payment/klarna-product-api-payment_release/3/#operation/confirmPaymentRequest

Unset

Fee Definition

Fixed Minor units (currency de�ned by the
transaction currency)

Variable Percentage points representing percent
value multiplied by 1 000 000.
E.g: 1.7% is transmitted as 1700000

Response example:

"payment_pricing": {
"rate": {

"fixed": 100,
"variable": 1200000

}
}

Release notes

📅 Settlement API will be made available in a future release.

Reconciling Klarna Settlements

Once a transaction is captured, the effective rates are applied based on the capture amount. The
detailed settlement �le will include the actual calculated amount of the fees, total amount, net
amount, and VAT applied to any fees.

Relating a payment to a settlement file

Payouts are made to the bank account(s) according to the schedule de�ned in your settlement
con�guration. The settlement_id is contained within the payment according to best practices in
each market. This id be used to easily correlate a given payout to the associated settlement �le.
Each currency will result in a separate payout with its own settlement id.

Relating a transaction to the applied fees

A given transaction can be captured or refunded multiple times, and as such fees may be applied to
the captured amount multiple times.

● The payment_transaction_id is provided within the settlement �le for all actions
regarding a payment transaction.

Con�dential and proprietary information 93

● The payment_capture_id reference is only associated with a speci�c capture, and
payment_refund_id with a speci�c refund. These references may be useful in associating
a given action with its reconciliation.

● The dispute_id used to handle disputes is also contained within the settlement �le, and
can be used to understand the associated fees applied as a result of that action.

Further details on the �elds included within a settlement �le are available in the Settlements section.

Handling adjustments

The settlement �le will detail captures, fees, refunds, disputes, discounts, and penalties. Here’s how
to handle them:

● Fees: The settlement �le will include the fees applied to each event. These match the
effective rates as previously discussed. VAT will be applied to the fees if applicable. The �xed
and variable rates of the VAT will be included in the settlement �le.

● Refunds: Refunds are withheld from subsequent payouts, as the payment is NET. If the
settlement amount is zero, the outstanding debt will be carried over and applied to
subsequent settlements.

○ Debt statement: Debt statements are issued if the partner has a negative balance (at
an aggregate level) for more than 30 days. This statement is not an invoice but a
statement of the partner to pay Klarna of the negative balance.

● Disputes: Disputes are also withheld (if won by shopper), and a fee may be applied.
● Discounts: Discounts may be applied for the implementation of boost products or ful�lling

other integration requirements as de�ned by Klarna. Discounts are applied on a per
transaction basis.

● Penalties: Penalties may be applied for deviating from best practices or miscommunicating
Klarna in some other way. Penalties may be applied on a per transaction basis.

Consuming rate and fee data

Reconciliation requires an understanding of both the buy rates communicated by Klarna and the sell
rates applied to merchants.

● Rate data: The buy rates are included within the price_plans and can be checked at any
time, but are de�ned in conversation with Klarna. Sell rates belong entirely to you as
acquiring partner, but are generally expected to match Klarna's public rates.

● Fee calculation: Use this data to calculate the fees for each transaction. Transactional fees
are determined through retrieval of the fees de�ned in the price plan. Any applicable
discounts are subtracted, and relevant penalties are added. If a microtransaction cap applies
to the order, the lesser of the calculated fee or the cap will be used. The variable rate is
applied at the time of capture, and the �nal result will be detailed in the settlement reports.

Communicating costs to merchants

Ensure clear communication with merchants regarding fees and costs to maintain transparency and
reduce risk of shopper errands and chargebacks. Provide detailed information about �xed and
variable fees, adjusted to re�ect the sell rates. If there is an issue, a merchant should raise the

Con�dential and proprietary information 94

confusion with the partner, as Klarna may be unable to communicate costs with the merchant
directly.

It’s essential to manage the differences between the rates you buy from Klarna and the rates you sell
to merchants. Perform internal calculations to ensure sell rates accurately re�ect the buy rates plus
any margin. Ensure the sell rates communicated to merchants are correct and transparent. Typically,
the �xed and variable fees on a transaction should be communicated to the merchant after they are
adjusted to re�ect the sell rates of the partner.

Settlement File
Data contained within the detailed settlement �le includes:

Parameter Definition Example

captured_at Datetime when the event was registered in Klarna’s
system (Coordinated Universal Time, UTC).
In case of a SALE transaction it refers to the moment
when you shipped the goods to the shopper and
captured/activated the payment.

2018�08�10T07�45�00Z

created_at Date when the transaction was �rst created in
Klarna’s system (Coordinated Universal Time, UTC).

2018�08�10T07�45�00Z

payment_transaction_
created_at

Date of the transaction con�rmation (Coordinated
Universal Time, UTC).

2018�08�10T07�45�00Z

payment_transaction_
id

Unique identi�er of the transaction. All related
transactions in the life-span of a transaction are
associated with this ID. eg. fees or refunds. It is
therefore the recommended identi�er for
reconciling the report lines with your system.

c504a9bb-1948�46d5

klarna_reference The reference to identify the shopper-facing
transaction.

9875QW2

payment_capture_id Unique identi�er for every capture on a transaction
and only provided for sale and fee transactions. In
case of partial shipments a transaction is captured
more than one time. Each related capture is re�ected
as a sale transaction with a unique capture_ID.

8e93b66�6ab1�4d3d-b6
0d-1cc4e24f4a99

merchant_reference The internal reference to the transaction, submitted
during transaction creation.

c504a9bb-1948�46d5

payment_transaction_
reference

The internal reference to the transaction, submitted
during payment creation. Not shared with end
customers.

c504a9bb-1948�46d5

amount The amount of the action represented by this
settlement line in minor units, denominated by the
currency.

$100.00 is 10000

payment_pricing.deta
ils.price_plan_id

ID assigned to the price plan de�ned for a acquiring
partner

krn:partner:global:pricin
g:payments:price-plan:17
1080e7�2637�4675-a224-
ec032723ebdf

Con�dential and proprietary information 95

Parameter Definition Example

payment_pricing.rate
.fixed Value of �xed fee in non-negative minor units

$5.99 is 599

payment_pricing.rate
.variable

Percentage points representing percent value
multiplied by 1 000 000

1.5% is 1 500 000

payment_pricing.rate
.tax.variable

VAT (Value added tax in Europe) or GST (goods and
services tax in Australia) rate on Klarna fees.
Percentage points representing percent value
multiplied by 1 000 000

1.2% for 1 200 000

payment_pricing.rate
.tax.fixed

VAT (Value added tax in Europe) or GST (goods and
services tax in Australia) amount on Klarna fees.
Represented in minor units.

$1.20 is expressed as
120

discount_amount Discounts applied to the capture by Klarna, must be
relayed to the end merchant in a 1�1 ratio.

$1.20 is expressed as
120

penalty_amount Penalties applied to the capture by Klarna, must be
relayed to the end merchant in a 1�1 ratio.

$1.20 is expressed as
120

currency Currency in which the payment has been registered.

The following currencies are currently available:DKK,
EUR, GBP, NOK, SEK, USD, CHF, CAD, AUD

EUR

payment_refund_id Unique identi�er for Return and Reversal transactions.
In case of partial returns, each return transaction is
associated with a unique refund_ID.

8e93b66�6ab1�4d3d-b6
0d-1cc4e24f4a99

payment_option_categ
ory

The payment option category, like PAY_NOW,
PAY_LATER etc.

PAY_NOW

capture_reference The reference to the capture, submitted during
capturing an transaction via API.

43d2fd82�4c4b-412a-bd
8b-07def0f1b721

refund_reference The reference to the refund submitted during
refunding a transaction via API.

7586ca7a-a92d-48ec-be
62�628c30d8c615

dispute_id Unique identi�er issued by Klarna to identify a
dispute, facilitating ef�cient tracking of its status.

krn:klarna:us1:dispute:ret
urn:318513301950489

account_id Unique account identi�er assigned by Klarna to the
onboarded merchant

krn:partner:global:accou
nt:live:LWT2XJSE

settlement_id Unique identi�er for the settlement and payout, will
be the reference on the bank statement

Con�dential and proprietary information 96

Test your integration
Klarna's test mode allows you to test your integration without making actual charges or payments.
Test mode is a testing environment to simulate transaction �ows without moving actual money, to
ensure that your integration with Klarna's systems operates as expected. Utilizing this mode is
essential for identifying and resolving any issues and should be included in all release routines to
ensure proper testing before going live.

Klarna requires all integrators to complete rigorous validation in the test environment prior to
launching in the live environment, and to provide Klarna with comprehensive access to their testing
environment for further validation.

Any testing within the live environment should be approached with the understanding that rejections
are a natural part of Klarna validations and can occur as part of the live testing phase. Although live
environment testing is not recommended, if it is necessary the below reasons are common
contributing factors to rejections in the live environment:

● Inputting test data (i.e. anything other than your real name, personal email, personal mobile,
home billing address, etc)

● Using a company address as personal data

● Insuf�cient purchase history with Klarna combined with high-value or large quantities of
purchases

● Triggering velocity rules - Loading the checkout multiple times in a short space of time from
the same device/IP

Con�dential and proprietary information 97

Test cases
In this section, you can �nd different scenarios for testing Klarna payments and management API
�ows.

Management API test cases
Test your Klarna Partner Management API integration by following the test cases below. As a Klarna
acquiring partner, we require you to complete and pass all the test cases listed in this section unless
exceptions have been approved by Klarna. If a speci�c product or interaction with Klarna is not
included in your integration, and this has been documented in your Solution Scope Document, the
representative test case should be skipped.

☑Test case 1: Create and list credentials for your own account
Steps to follow:

1. Create new API credentials for your own Acquiring Partner account.
2. List the credentials to inspect all created API credentials.

SecurityWarning

⚠ For security reasons never provide real personal or business data in a test environment.

☑Test case 2: Onboard a newmerchant
Steps to follow:

1. Onboard a new merchant and get the credentials.
2. Validate all the account and business info, channel collections, and all the other important

details are sent to Klarna.

You can use this sample data found on docs.klarna.com.

☑Test case 3: Disable a payment product and revert the action
Acquiring Partners working with Klarna can proactively suspend a product associated with an
account if they stop their relationship with that account holder or believe the account may be
breaking the terms of their agreement.

Steps to follow:
1. Onboard a new merchant and get the credentials.
2. Suspend a payment product.
3. Revert the suspension.

Con�dential and proprietary information 98

☑Test case 4: Configure, update and list channels for an account
Channels represent how Klarna’s products are shown to the end shoppers, be it a website, physical
store or a mobile app. Using the correct website channel ensures that the correct branding and
identity features are displayed to shoppers, enhancing their experience.

Release notes

📅 Multiple channels and other channels beyond websites will be supported in future releases.

☑Test case 5: Update and list a channel collections for an account
Channel collection information is crucial for enhancing the shopper’s purchase and post-purchase
experience. In a production environment, the customer will be able to take additional actions such as
reaching out to customer support or reviewing return processes for the speci�c merchant where
they have made a purchase. This information is linked to speci�c channels like websites, apps, or
physical stores, ensuring that all transactions made through these channels have access to relevant
support information when needed.

Release notes

📅 Multiple channels and other channels beyond websites will be supported in future releases.

☑Test case 6: Fetch and update account information
It's important that the account information re�ects the latest information about your merchants at all
times. Fetch and update account information to ensure that all systems are aligned with regards to
this information.

This should be programmatically handled whenever an update is applied to an account in your
system. Ensure you are testing that the end-to-end functionality is working as expected.

☑Test case 7: Fetch and update the business information for an account
Fetch and update the business information for an account to ensure that the details were correctly
sent on onboarding, and that the details can be updated afterwards when required.

This should be programmatically handled whenever an update is applied to an account in your
system. Ensure you are testing that the end-to-end functionality is working as expected.

Steps to follow:
1. Fetch the business information for an already existing account.
2. Update any of the details previously fetched for the same account.
3. Verify that the changes are correctly updated in Klarna’s system.

Con�dential and proprietary information 99

☑Test case 8: Create, get, and delete a signing key for an account
Signing keys are used to verify webhook noti�cations.

Steps to follow:
1. Create a new signing key.
2. Delete the same signing key.
3. Verify webhooks are working or not, depending on the status of the signing key in use.

☑Test case 9: Error handling
Is input sent to Klarna validated, and how are potential errors displayed to the merchant? See the
Error handling page for more info of error details and how to handle them.

Con�dential and proprietary information 100

End-to-end test cases
Test your Klarna integration by following the steps for each of the cases below. Here are some things
to keep in mind when you test:

● You can verify the results in the Orders app in the Klarna test portal.
● In all test cases, use Klarna’s sample shopper data for the market you are testing.
● Make sure to use your test environment API credentials. Your production keys won't work.
● You can also validate optional data using the Logs app in the Klarna test portal. Keep the API

reference open as it will help you to understand the details in the logs.

Happy testing!

SecurityWarning

⚠ Don't use any real-life data when testing. Instead, use the sample shopper data and sample payment
data provided here.

Ecommerce end-to-end test cases:

☑Test case 1: Complete, fully capture, and fully refund a payment transaction
Steps to follow:

1. Complete a payment transaction with one item: validate your request and the responses
received in your backend and check that the product name, price, tax amount, quantity and
shopper details match the information provided during the customer �ow.

2. Process a full capture: simulate shipping the goods to the shopper, verify the transaction has
been captured in your system and in the Klarna test portal.

3. Process a full refund: simulate returning the transaction by refunding the amount back. Verify
the transaction has been refunded in your system and in the Klarna test portal.

Expected outcome:
● The payment con�rmation page loads correctly upon transaction completion.
● The payment transaction is created in your system and in the Klarna test portal.
● The payment transaction details in the Klarna test portal and in your system match those

entered during the test:
● The payment transaction status updates correctly for both capture and refund stages.

Release notes

📅 Payment transaction management API will be available via the Klarna Network APIs in future releases.

Con�dential and proprietary information 101

☑Test case 2: Complete, fully capture, and partially refund a payment
transaction
Steps to follow:

1. Complete a payment transaction with at least two items: verify that the cart is being updated
when navigating between the checkout and the product pages.
*Tip: Navigate back and forth between checkout and product pages, and add more than one
item to the shopping cart everytime.

2. Process a full capture: simulate shipping the goods to the shopper, verify the transaction has
been captured in your system and in the Klarna test portal.

3. Process a partial refund: simulate returning just one item and verify that the payment
transaction has a status Partially refunded in Klarna test portal, and that the refunded
amount and the remaining open amount are correct.

Expected outcome:
● The payment con�rmation page loads correctly upon transaction completion.
● The payment transaction details in the Klarna test portal match those entered during the

test.
● The payment transaction status updates correctly for both capture and refund stages.

Release notes

📅 Payment transaction management API will be available via the Klarna Network APIs in future releases

☑Test case 3: Complete and partially capture a payment transaction, release
the remaining authorization
Steps to follow:

1. Complete a payment transaction with at least two items.
2. Process a partial capture: simulate shipping just some of the purchased goods to the

shopper, verify the transaction has been captured in your system and in the Klarna test
portal.

3. Capture the payment in full: simulate shipping the goods to the shopper, verify the
transaction has been captured in your system and in the Klarna test portal.

4. Process a partial refund: simulate returning just one item and verify that the payment
transaction has a status Partially refunded in Klarna test portal, and that the refunded
amount and the remaining open amount are correct.

5. Release the remaining amount: verify that the captured amount is correct in your system and
in the Klarna test portal, and there’s no remaining open amount for the transaction.

Expected outcome:
● The payment con�rmation page loads correctly upon transaction completion.
● Transaction details in the Klarna test portal match those entered during the test.
● Transaction status updates correctly for both capture and refund stages.
● Transaction has no remaining open amount left

Con�dential and proprietary information 102

Release notes

📅 Payment transaction management API will be available via the Klarna Network APIs in future releases

☑Test case 4: Complete, fully capture, and fully refund a payment transaction
with a discount code
Steps to follow:

1. Complete a payment transaction with at least two items (same as Test case 2) with a discount
code.

2. Process a full capture (same as Test case 1): ensure the discount code is taken into account
in your system and in the Klarna test portal.

3. Process a full refund (same as Test case 1): ensure the discount code is taken into account in
your system and in the Klarna test portal.

Expected outcome:
● The payment con�rmation page loads correctly upon transaction completion.
● The payment transaction details in the Klarna test portal match those entered during the

test.
● The payment transaction status updates correctly for both capture and refund stages.
● The discount is taken into account in the captured and the refunded amount.

Release notes

📅 Payment transaction management API will be available via the Klarna Network APIs in future releases

☑Test case 5: Complete, fully capture, and partially refund a payment
transaction with a gift card
Steps to follow:

1. Complete a payment transaction with at least two items (same as Test case 2) and a gift card
to reduce the payment amount.

2. Process a full capture (same as Test case 1): ensure the discount of the gift card t is taken
into account in your system and in the Klarna test portal.

3. Process a partial refund (same as Test case 3): ensure the discount of the gift card is taken
into account in your system and in the Klarna test portal and the refunded amount and the
remaining open amount to be paid are correct.

Expected outcome:
● The payment con�rmation page loads correctly upon transaction completion.
● The payment transaction details in the Klarna test portal match those entered during the

test.
● The payment transaction status updates correctly for both capture and refund stages.
● The gift card is included in the line items

Con�dential and proprietary information 103

Release notes

📅 Payment transaction management API will be available via the Klarna Network APIs in future releases

☑Test case 6: Complete and cancel a payment transaction
Steps to follow:

1. Complete a payment transaction with one item (same as Test case 1)
2. Cancel the payment: verify the cancellation in your system and in the Klarna test portal,

check the transaction’s status is Canceled.

Expected outcome:
● The payment con�rmation page loads correctly upon transaction completion.
● The payment transaction details in the Klarna test portal match those entered during the

test.
● The payment transaction status updates correctly after canceling the transaction.

Release notes

📅 Payment transaction management API will be available via the Klarna Network APIs in future releases

☑Test case 7: Complete a payment transaction with different customer and
shipping details
Steps to follow:

1. Complete a payment transaction with one item (same as Test case 1): use different customer
and shipping recipient details.

2. Verify that the transaction has the correct shipping details in your system, and in the Klarna
test portal.

Expected outcome:
● The payment con�rmation page loads correctly upon transaction completion.
● The payment transaction details in the Klarna test portal match those entered during the

test.
● The payment transaction status updates correctly for both capture and refund stages.

Release notes

📅 Payment transaction management API will be available via the Klarna Network APIs in future releases

☑Test case 8: Complete a denied payment transaction
Steps to follow:

1. Complete a payment transaction with one item (same as Test case 1): use denied test shopper
details that result in denied purchase.

Con�dential and proprietary information 104

https://docs.klarna.com/resources/test-environment/sample-customer-data/
https://docs.klarna.com/resources/test-environment/sample-customer-data/

2. Con�rm the payment �ow redirects back to the checkout page, and it allows you to choose
another payment method.

Expected outcome:
● The shopper can change the payment method after the initial failed payment attempt.

☑Test case 9: Complete a free purchase transaction
Steps to follow:

1. Initiate a payment transaction where the total order amount is 0.
2. Proceed through the checkout process as a regular shopper.
3. Con�rm that the payment �ow completes successfully without requiring any payment

method.
4. Verify that the order con�rmation page is displayed, indicating a successful transaction.

Expected outcome:
● The shopper is able to complete the purchase without any payment method since the total

order amount is 0.
● The order con�rmation page is displayed, con�rming the successful completion of the

transaction.

☑Test case 10: Verify the purchase flow in desktop, mobile and app views
Steps to follow:

1. Complete a payment transaction with one item in desktop view (same as Test case 1)
2. Complete a payment transaction with one item in mobile view (same as Test case 1)
3. Complete a payment transaction with one item in mobile app (same as Test case 1)

a. Con�rm that any links redirecting to third party apps (e.g. Bank ID and other
authentication apps) work.

Expected outcome:
● The payment con�rmation page loads correctly upon transaction completion for all devices

and views.
● The payment transaction details in the Klarna test portal match those entered during the

test.
● The payment transaction status updates correctly for both capture and refund stages.

Con�dential and proprietary information 105

Sample shopper data and test triggers
This section contains sample data you can use to perform the testing of your integration in the
Klarna test environment and complete the Test cases section in the Klarna playground environment.

Sample business data
In order to test the Management API, you need to type of business data:

● Business partner data: please reach out to your Klarna point of contact so they can share all
parameters needed.

● Merchant account data: please use the following information to test merchant onboarding.

Account owner

Parameter Sample

given_name John

family_name Doe

email john.doe@example.com

phone +18445527621

Business information

Parameter Sample

business_name John Doe LLC

business_entity_tyoe LIMITED_LIABILITY_COMPANY

registration_authority Ohio

registration_name 12345678

tax_registration_ number 999�999�999

financial_registration_number 123�456�789

Operating/registration address

Parameter Sample

street_address 800 N. High St

Con�dential and proprietary information 106

street_address2 Ste. 400

postal_code 43215

city Columbus

region OH

country US

⚠If you decide to use any other data, do NOT use Personally Identi�able Information (PII).

Sample shopper data
To test the standard approved and denied payment �ows in Klarna payments use this data.

Sample payment data
To test different payment methods use this data.

Considerations:

Every Klarna payment method features distinct thresholds based on market speci�cs that should be
considered when testing.

These limits are subject to change without notice and should not be hardcoded.

Market Pay Later
30 days

Pay in 3/4 Term loan Pay by Card Direct Debit Direct Bank
Transfer

United States
of America

Min: 0 USD
Max: 1000

USD

Min: 35 USD
Max: 4000

USD

6 months
149�10000

USD
12 months

299�1000 USD
18 months
599�10000

USD
24 months
999�10000

USD

Min: 0 USD
Max: 4000

USD

NA NA

Australia Min: 0 AUD
Max: 500 AUD

Min: 35 AUD
Max: 2000

AUD

NA Min: 0 AUD
Max: 4000

AUD

NA NA

Austria Min: 0.1 EUR
Max: 5000

EUR

Min: 25 EUR
Max: 5000

EUR

6 months
25�10000 EUR
12 months
120�10000

EUR

Min: 0 EUR
Max: 10000

EUR

Min: 0 EUR
Max: 5000

EUR

Min: 0.1 EUR
Max: 14000

EUR

Con�dential and proprietary information 107

https://docs.klarna.com/resources/test-environment/sample-customer-data/#all-countries
https://docs.klarna.com/resources/test-environment/sample-payment-data/

Market Pay Later
30 days

Pay in 3/4 Term loan Pay by Card Direct Debit Direct Bank
Transfer

18 months
1000�10000

EUR
24 months
1000�10000

EUR

Belgium Min: 1 EUR
Max: 1500

EUR

NA NA Min: 0 EUR
Max: 10000

EUR

Min:
Max:

Min: 0.1 EUR
Max: 14000

EUR

Canada NA Min: 35 CAD
Max: 1500

CAD

NA Min: O CAD
Max: 2000

CAD

NA NA

Denmark Min: 1 DKK
Max: 50000

DKK

Min: 350 DKK
Max: 50000

DKK

NA Min: 0 DKK
Max: 100000

DKK

NA NA

Finland Min: 1 EUR
Max: 5000

EUR

Min: 25 EUR
Max: 5000

EUR

6 months
25�5000 EUR
12 months

120�5000 EUR
18 months
240�5000

EUR
24 months
360�5000

EUR

Min: 0 EUR
Max: 10000

EUR

NA Min: 0.1 EUR
Max: 14000

EUR

France Min: 0 EUR
Max: 500 EUR

Min: 35 EUR
Max: 1500

EUR

NA Min: 0 EUR
Max: 4000

EUR

NA NA

Germany Min: 0.1 EUR
Max: 10000

EUR

Min: 25 EUR
Max: 10000

EUR

6 months
25�10000 EUR
12 months
120�10000

EUR
18 months
1000�10000

EUR
24 months
1000�10000

EUR

Min: 0 EUR
Max: 10000

EUR

Min: 0 EUR
Max: 5000

EUR

Min: 0.1 EUR
Max: 14000

EUR

Italy Min: 0 EUR
Max: 500 EUR

Min: 35 EUR
Max: 1500

EUR

NA Min: 0 EUR
Max: 4000

EUR

NA NA

Netherlands Min: 1 EUR
Max: 5000

EUR

Min: 35 EUR
Max: 4000

EUR

NA Min: 0 EUR
Max: 10000

EUR

Min: 0 EUR
Max: 5000

EUR

Min: 0.1 EUR
Max: 14000

EUR

New Zealand NA Min: 35 NZD
Max: 2000

NA NA NA NA

Con�dential and proprietary information 108

Market Pay Later
30 days

Pay in 3/4 Term loan Pay by Card Direct Debit Direct Bank
Transfer

NZD

Norway Min: 1 NOK
Max: 150000

NOK

Min: 250 NOK
Max: 150000

NOK

6 months
250�150000

NOK
12 months

1200�150000
NOK

18 months
2400�150000

NOK
24 months

3600�150000
NOK

Min: 0 NOK
Max: 100000

NOK

NA NA

Poland Min: 0 PLN
Max: 7000

PLN

Min: 150 PLN
Max: 5000

PLN

NA Min: 0 PLN
Max: 20000

PLN

NA NA

Spain Min: 0 EUR
Max: 500 EUR

Min: 35 EUR
Max: 1500

EUR

NA Min: 0 EUR
Max: 4000

EUR

NA NA

Sweden Min: 1 SEK
Max: 150000

SEK

Min: 300 SEK
Max: 849.99

SEK
*These thresholds
may vary depending
on the agreement

6 months
250�150000

SEK
12 months

1200�150000
SEK

18 months
2400�150000

SEK
24 months

3600�150000
SEK

Min: 0 SEK
Max: 100000

SEK

Min: 0 SEK
Max: 50000

SEK

Min: 1 SEK
Max: 150000

SEK

Switzerland Min: 1 CHF
Max: 2500

CHF

NA NA Min: 0 CHF
Max: 10000

CHF

NA Min: 0.1 CHF
Max: 13000

CHF

United
Kingdom

Min: 1 GBP
Max: 600 GBP

Min:30 GBP
Max: 2000

GBP

6 months
250�5000

GBP
12 months
500�5000

GBP
18 months
1200�5000

GBP
24 months
1200�5000

GBP

Min: 0 GBP
Max: 4000

GBP

NA Min:0.1 GBP
Max: 115000

GBP

Ireland NA Min: 35 EUR
Max: 1500

EUR

NA Min: 0 EUR
Max: 4000

EUR

NA NA

Con�dential and proprietary information 109

Market Pay Later
30 days

Pay in 3/4 Term loan Pay by Card Direct Debit Direct Bank
Transfer

Portugal Min: 0 EUR
Max: 500 EUR

Min: 35 EUR
Max: 1000

EUR

NA Min: 0 EUR
Max: 4000

EUR

NA NA

Mexico NA Min: 700 MXN
Max: 20000

MXN

NA NA NA NA

Romania NA Min: 200 RON
Max: 5000

RON

NA Min: 0 RON
Max: 20000

RON

NA NA

Greece Min: 0 EUR
Max: 500 EUR

Min: 35 EUR
Max: 1000

EUR

NA Min: 0 EUR
Max: 4000

EUR

NA NA

Czech
Republic

NA Min: 850 CZK
Max: 25000

CZK

NA Min: 0 CZK
Max: 100000

CZK

NA NA

Hungary NA Min: 14000
HUF

Max: 400000
HUF

NA Min: 0 HUF
Max: 1500000

HUF

NA NA

Con�dential and proprietary information 110

Resources

Klarna integration principles
When designing solutions and integrating with Klarna APIs, think about long-term performance and
scalability from the very beginning. It is critical to craft a scalable architecture capable of supporting
growth and ensuring ef�cient API use as well as enabling regular monitoring and agile responsiveness
are essential for maintaining peak performance.

Our solutions are designed around the following principles in mind: :

● Dynamic product availability: Con�rm product availability dynamically and retrieve payment
descriptors. This approach allows to tailor the shopper experience to increase conversion
rates as well as enables �exibility to accommodate future product developments, reducing
development time when entering new markets or launching new products. It also enhances
compliance with regulatory changes.

● Idempotency and fallback logic: Implement idempotency wherever possible to ensure
consistency between systems. Establish fallback logic to synchronize updates and system
alignment in case of incidents or delays. This strategy improves recovery time in the event of
a disruption.

● Embrace continuous improvement: Regularly test, learn, and re�ne your integration to keep
pace with shopper expectations and industry developments. Stay updated with the latest
features from Klarna to further improve the user experience.

Further recommendations and best practices are shared throughout this documentation. By
adopting a user-focused, security-conscious, and performance-driven approach and committing to
continuous improvement, you can develop a Klarna solution that not only ful�lls your business goals
but also delights your shoppers.

Klarna ecosystem

Environments
Klarna provides both test and live environments, each designed to support seamless global
integration of the Partner Management API, Partner Product API, and other Klarna products,
irrespective of your location, the shopper’s origin or other particular considerations.

Klarna Partners are required to make both test and live environments available to all Partners
integrated via their services to allow for the validation of their Klarna integration. All services

Con�dential and proprietary information 111

available in production are required to be included in this availability. Klarna requires that accounts
in any environment not be shared across multiple Partners.

These environments function entirely independently of each other, and may behave differently as a
result of the below considerations:

● Access and authentication: Different base URLs and credentials are used to access the live
and test environments.

● Functionality: The test environment simulates the live environment but lacks active fraud
assessments, including any identity or address detail validation. Any atypical �ow needs
manual initiation through test triggers.

● Data security: The test environment does not use One-Time Passwords (OTP), making it
inappropriate for sharing Personal Identi�able Information (PII). PII entered into the test
environment is replaced with synthetic data, which means response values might vary unless
Klarna's sample data is used. This approach minimizes data leak risks.

● Settings: Adjustments made in one environment do not affect the other. For instance,
changes to branding or product offering made in the test environment won't impact the live
environment.

● Transactions and accounts: Transactions or user accounts created in one environment do not
transfer to the other. For example, transactions placed in the test environment will not
appear in the live environment.

Endpoints
Global base URLs are provided to optimize latency and enhance fault tolerance.

Environment DNS IP Addresses

Live api-global.klarna.com 13.248.252.240, 76.223.28.105

Test api-global.test.klarna.com 3.33.145.71, 13.248.213.183

Callbacks
Callbacks from Klarna will originate from speci�c IP addresses for each environment.

Environment Callback IP Addresses

Live 52.17.117.56, 52.17.176.198, 52.0.45.33, 52.0.46.187, 13.211.30.100,
3.104.49.49, 13.54.229.130

Test 34.242.203.160, 34.242.19.4, 52.45.47.152, 34.235.91.238, 3.24.91.202,
52.62.115.68, 52.63.129.92

Con�dential and proprietary information 112

Versioning and deprecation
Klarna is committed to ensure that updates to our APIs are backward compatible whenever possible,
allowing your systems to continue running smoothly as new features are introduced. Should there be
any breaking changes, these will be implemented under a new API version.

Examples of breaking changes:

● Removal of ENUM values

● Removal of actions (HTTP Methods)

● Removal of resources/Endpoints

● Change in state machine transitions, or introduction of new states

Backward-compatible changes

We classify certain updates as backward-compatible, meaning they should not require modi�cations
on your side to continue using the API effectively.

Your integration should be capable of handling the following changes:

● Adding new API resources: Introduction of new endpoints or resources will not affect existing
functionality.

● Adding new optional request parameters: New parameters added to existing API methods will
not alter the behavior of existing calls; they will provide additional functionality if you choose
to use them.

● Adding new properties to API responses: Additional �elds in API responses are designed to be
ignored by partners who do not expect them, ensuring compatibility with older versions.

● Changing the order of properties: The sequence of properties in API responses may vary, but
this will not impact integrations that rely on proper key-based parsing instead of the order of
data.

● Adjustments to opaque strings: Changes to the format of strings such as IDs.

● Introducing new event types: New events might be added to our webhooks, if they are
optional, and do not affect the behavior of the existing integration. Ensure your webhook
listeners are prepared to handle atypical event types gracefully, either by logging them for
review (recommended) or safely ignoring them.

Best practices for ensuring a high-quality integration
To optimize your integration and prepare for future updates, consider these best practices:

● Flexible data handling: Implement �exible data parsing that can accommodate additional
�elds without causing errors or disruptions.

Con�dential and proprietary information 113

● Regular updates: Stay updated with our latest API documentation and changes. Regular
updates to your integration can help leverage new features and enhancements while
maintaining compatibility. Klarna will keep you informed about deprecations.

● Error handling: Develop robust error handling mechanisms to manage unexpected API
responses or failures gracefully. This minimizes the impact on the user experience and
makes your application more resilient.

By adhering to these guidelines and preparing your integration for both backward-compatible
changes and keeping your integration up-to-date with the latest API version from Klarna will ensure a
seamless interaction with Klarna's evolving API landscape.

Availability and latency

In this section you will �nd details of service level commitments related to Klarna’s solutions. This
includes the execution of API calls related to the creation of new transactions from an accounts
website through Klarna’s API as well as other features and functionalities that may be provided as
part of our services.

Latency
The latency of a service indicates the time to get a response to a request done to Klarna service.
This latency is measured and calculated on all requests at the 99 percentile and at the edge of the
region in which the service is deployed. This latency however, does not include Internet network
latency impact.

Downtime
Downtimes in Klarna’s services re�ect the actual time when a Klarna solution is not responding to
requests with status code being 2xx, 3xx or 4xx. It is important to note that the following scenarios
are not considered downtime:

● Unavailability due to circumstances that are outside of Klarna’s control such as force
majeure which affects all of Klarna’s redundant and geographically dispersed production
sites.

● Any unavailability or downtime attributable to acts or omissions of Acquiring partners, Third
Party Payment Option Providers, banks or other external data providers.

● Unavailability caused by or attributable to the Partner and/or any of the Partners contractors,
suppliers or any other third party that the Merchant cooperates with.

● Unavailability due to maintenance downtime. Transactional services are designed to be zero
downtime, however in the exceptional case that maintenance downtime is required, Klarna
will inform this via our Status monitor system with at least 7 days in advance.

Con�dential and proprietary information 114

https://status.klarna.com/

Technical Support
Customer support for merchants is available by email, chat or telephone from 9�00 to 17�00 local
time on business days (Monday to Friday).

Weekend availability is based on the market and may vary, check speci�c market availability here.

Web SDK
Klarna.js is a Web SDK that bundles all our products, including payments and boost products.

This SDK will allow you to handle your most frequent use cases easily, with a few lines of code, and
allowing customization for additional edge cases.

Our API is primarily redirect driven, but will run on-page through modal when supported by the
device. The same integration pattern can be used for both redirect and on-page mode. This means
that the SDK survives a loss of JavaScript context and can restart itself.

To learn more on how to integrate Klarna leveraging Klarna.js, see Recommended integration:
Klarna.js section.

Consult the SDK reference for a complete description of the speci�cations.

Mobile SDK
Klarna Mobile SDK enables Klarna services to work seamlessly within a native mobile app.
The Mobile SDK supports Klarna Payment, Klarna Express checkout, Sign in with Klarna, On-Site
messaging, and more, using technologies like Kotlin, Swift, JavaScript, and Typescript.

This SDK is the recommended default way to use Klarna products in mobile applications. This is
mainly due to the limitations of the WebViews in both iOS and Android. The SDK adds iOS/Android
native components and lets Klarna services overcome those issues with a communication between
web and native environments.

Not using the Mobile SDK can degrade your Klarna integration and may prevent customers from
completing their payments because:

● Third-party banks and card processors may block or restrict interactions through WebViews.
● Cookies in WebViews are handled differently, causing additional friction during checkout.
● WebViews don't handle navigation to third-party applications for authorization and

authentication, while the Mobile SDK does.
● The App Handover feature enabled by Mobile SDK allows seamless redirection for

authentication and consent within the Klarna app, enhancing security and streamlining
processes.

● The Mobile SDK supports SSO/"Remember me" across apps, enabling shared login and
pre-�lled shopper details, making it easier for returning users.

Con�dential and proprietary information 115

http://klarna.com/merchant-support
https://docs.klarna.com/websdk/typedocs/

Security

API Authentication Standards
All server-side REST APIs require API keys for authentication, whereas the Klarna Web SDK uses
Client IDs. Ensure all API requests are transmitted over HTTPS using TLS 1.2 protocol at a minimum.
Attempts to connect without valid credentials or via plain HTTP will not succeed.

API keys are sensitive; handle them with utmost care.

The TLS certi�cates at API endpoints are issued by AWS Certi�cate Manager and are subject to
automatic renewal as expiration approaches. We advise against reliance on speci�c certi�cate
details, recommending instead trust in the root CA as outlined in the documentation.

Global authentication for Partner Product API
For acquiring partners working with multiple account_ids, you should consider the following:

● account_idmust be included in the path for operations on a speci�c merchant or its
resources (use the account_id returned by the Management API):

○ /v1/accounts/{account_id}/payment/requests
○ HTTP header :
○ Authorization: Basic <api_key>

Release notes

📅 This will be available in future releases, in the meantime, please ensure the following:
● Klarna-Partner-Account HTTP header must be included for operations on a merchant or its

resources (use the account_id returned by the Management API):
○ /v1/accounts/{account_id}/payment/confirmation-tokens/{payment_confir

mation_token}/confirm
○ HTTP header:
○ Authorization: Basic <api_key>

DDOS Protection
Our integration APIs are forti�ed with active DDOS protection measures designed to stop traf�c
identi�ed as illegitimate or exhibiting atypical behaviors. If a DDOS protection rule is triggered, the
HTTP-status code 403 will be returned, absent the typical error information object.

Further information about rate limiting is available in the Rate limiting section.

Con�dential and proprietary information 116

https://aws.amazon.com/certificate-manager/
https://docs.aws.amazon.com/acm/latest/userguide/acm-certificate.html

Communication security
The global API endpoint is secured via 2 anycast static IPs, enabling partners to con�gure egress
security measures within their IT infrastructure effectively.

API key usage can be restricted to designated CIDR blocks, ensuring only authorized calls from
predetermined IP addresses are allowed. This measure effectively restricts access to Klarna's API to
trusted networks, reducing the risk of unauthorized access.

Callbacks from Klarna will originate from speci�c IP addresses based on the environment,
information which should be used to con�gure �rewalls for enhanced security.

Security Protocols and Best Practices
Security protocols vary by integration and should be assessed individually. However, some universal
requirements include:

● Maintaining up-to-date security across all system components, promptly applying the latest
patches, and employing a thorough testing process before deployment.

● Carrying out regular fraud assessments to pinpoint and address potential security issues.

● Limiting administrative rights strictly to those who need them, adhering to the principle of
least privilege.

● Keeping a formal log of all individuals with access to Klarna systems and ensuring access is
granted via corporate email addresses.

● Regularly monitoring and updating access rights, especially after an employee's role changes
or departure, and conducting periodic access reviews.

● Avoiding shared accounts to ensure actions can be attributed to individual users.

● Enforcing the use of strong passwords (14 or more characters) and enabling two-factor
authentication (2FA) where feasible.

● Encrypting stored secrets and not keeping them in plaintext.

● Considering suppliers and third-party providers within the organization’s overall security
strategy and conducting appropriate evaluations.

● Enabling logging for sensitive actions and monitoring for suspicious activities.

Klarna mandates that partners report any suspicious activities through partner support or the Klarna
portal chat. This includes unusual Klarna transaction processes. Such collaborative vigilance is
crucial in detecting and mitigating potential threats early, ensuring a secure environment for all
parties involved. Klarna reserves the right to disable API keys upon detecting any evidence of
potential compromise.

Con�dential and proprietary information 117

Adherence to these guidelines is essential for maintaining robust security standards and protecting
against potential vulnerabilities.

Authentication type by service
Two authentication methods are used in the platform: API authentication via anAPI key and a client
ID, employed to authenticate the calling account.

● The API key is highly con�dential and must never be exposed in clear-text beyond an API
request.

● The client-id is used in a browser environment and is not secret in itself, it must be con�gured
with a list of approved websites from which it’s approved to be used which will prevent some
fraud scenarios

Both API-keys and client-ids are signed tokens which are veri�ed by the platform to ensure the
integrity of the information.

The pattern for both API-keys and client-ids are: klarna_<api/client>_<live/test>_<token>

Client ID Structure:
klarna_<live|test>_<client>_<random>

Client ID Example:
klarna_test_client_elZGI1B5dHBIRWcjZrNldnbEVj[...]uefnc3

API Key Structure::
klarna_<live|test>_<api>_<random>

API Key Example:
klarna_live_api_elZGI1B5dHBIRWltRjF5cjZrNldnbEVjKnIqeC[...]Uybz0

The authentication information used by features of the platform

Feature Authentication type

Web SDK Client-id

REST API API-key

Sign-in-with-klarna OAuth using client-id and API-key

Con�dential and proprietary information 118

Rate limiting
To safeguard our APIs from potential misuse due to coding errors, suboptimal integrations, and
malicious activities, we implement proactive rate limiting. This document outlines the classi�cations,
enforcement, and management of rate limits across various API categories critical to our services.

API operation categories

We classify API actions based on their relevance to the purchase process and the resources they
consume. This classi�cation helps minimize interference between processes, ensuring ef�cient
operation. For example, we strive to prevent extensive settlement report processes from impacting
new payment transaction capabilities.

API rate limit action categories are as follows:

● Account onboarding: Involves resource-intensive tasks such as creating accounts, requiring
synchronous calls to other APIs.

● Payment transaction capture: Crucial actions for capturing payment transactions.

● Payment transaction management: Covers actions related to managing payment transactions
that are not essential for the capture process.

● Settlement: Includes actions that could affect rate limits in other areas, identi�ed through
access log analysis.

● Dispute: Speci�cally addresses operations related to handling disputes.

● Partner management: Encompasses work�ows for managing partners, excluding the
onboarding of new partner accounts.

Rate limit enforcement

Requests to the global API endpoint are processed in the closest data center relative to the caller's
location. The rate limit con�guration for a given Partner and Acquiring Partner is the same across all
locations within a speci�c environment. However, the rate limit quota is enforced by each data
center. Therefore, requests for the same sub-partner from different parts of the world may
experience different rate limit statuses.

The rate limit mechanism tracks rate limits for API operations at two distinct levels:

● Acquiring Partner level: This encompasses all operations, including those on sub-partners.

● Partner level: These limits apply uniquely to each sub-partner.

Con�dential and proprietary information 119

If either limit is reached, a request will be subject to rate limiting.

API Category Partner Acquiring
Partner

Rate Limit by API Operation Category in Production

account-onboarding 0/s 10/s

payment-transaction-capture 50/s 200/s

payment-transaction-management 200/s 500/s

dispute 20/s 50/s

settlement 0/s 150/s

partner-management 20/s 50/s

Rate Limit by API Category in Playground

account-onboarding 0 5/s

payment-transaction-capture 12/s 50/s

payment-transaction-management 50/s 125/s

dispute 5/s 12/s

settlement 0/s 37/s

partner-management 5/s 12/s

Handling rate limits

A rate-limited request returns an HTTP-status code 429 and headers indicating the remaining quota:

● X-Ratelimit-Limit: Information on the rate limits and the metering interval. The �rst item
is the quota that is closest to being exceeded. This is followed by one or more rate limit
quota policy descriptions.

● X-Ratelimit-Reset: Time in seconds until the current metering interval resets.. For
per-second rate limiting, this will always be “1”.

● X-Ratelimit-Remaining: The approximate remaining quota of the rate limit

When a rate limit is reached, we require implementing a retry mechanism with exponential back-off
to prevent retry attempts from retriggering rate limiting; add jitter to the back-off as retrying all
attempts together is likely to draw out the issue. In addition, Klarna suggests that a token bucket

Con�dential and proprietary information 120

JavaScript

JavaScript

algorithm is used to control the globa l �ow of requests from the calling system to the API, this will
help to reduce the likelihood of rate limiting in future.

Rate limit quota policy
A rate limit quota policy element is describing a rate limit that has been evaluated for the request.
More than one can be active at the same time. In the current API there will be two, one for the
Acquiring Partner-level rate limit and one for the sub-partner ratelimit.

Example of a single quota policy:

40;w=1;name="ratelimit-name"

● The “40” is how many units are available within a refresh-interval

● The “w=1” describes the length in seconds of interval after which the rate limit quota is reset

● The “name” component is optional and should be seen as informational and can change
without notice. Typical values for the name will include the level where the rate limit applies
and the rate limit operation category.

Example:
The values in the headers are approximate and provided on a best-effort basis.

Example:

X-Ratelimit-Limit: 40,
40;w=1;name="account_payment-request-capture",100;w=1;name="psp_payment-request-
capture"
X-Ratelimit-Remaining: 15
X-Ratelimit-Reset: 1

The information returned with the above response should be interpreted as follows:
● The rate limit quota closest to being reached for the interval is 40 requests per second with

the descriptive name “account_payment-request-capture”
● The quota window interval is 1 second
● There are 15 requests remaining within the 1-second time window before further requests are

rejected
● There is 1 second until this quota resets

Con�dential and proprietary information 121

Common causes for rate limiting
We aim to set rate limiting quotas to ensure that the majority of merchants experience no rate
limitations for legitimate traf�c. However, you may encounter rate limits in the following scenarios:

● High request rate: Exceeding the de�ned rate limits due to a rapid in�ux of requests within a
short timeframe may trigger rate limiting. To address this, it is advised to distribute requests
evenly over the interval speci�ed by informational headers and employ retries with
exponential backoff.

● Traffic surges: A sudden and substantial increase in traf�c, such as during a �ash sale, can
deplete the rate limit quota. If you anticipate an upcoming event that may surpass your
request quota, kindly reach out to Partner Support or contact your Account Manager for
assistance.

● Bot-generated requests: The presence of bots on a website may result in an increased
frequency of requests, potentially leading to rate limiting as a preventive measure against
web scraping or data harvesting. It is recommended to implement bot-detection methods
and, if suspicious bot activity is detected, initiate authentication before making API calls.

Rate limiting changemanagement

Adjustments to rate limiting protocols are managed per the Klarna change management process as
outlined in Versioning and deprecation. Changes may occur without prior notice in response to
abuse or consistent deviation from best practices.

It is crucial to monitor the rate limiting information returned in response headers to adapt to any
adjustments effectively.

Con�dential and proprietary information 122

Integration resilience

Idempotency
Idempotency is a key concept in system operations, ensuring that repeating the same action multiple
times doesn't change the outcome after the �rst execution. This principle is crucial for maintaining
consistency and reliability, particularly in payments integrations, enhancing user experience and
system stability.

Klarna requires idempotent integration of its systems for actions that could change a transaction's
status. This safeguards against unwanted changes or duplications if a request is repeated. To
manage this, Partners can use the ‘Klarna-Idempotency-Key’ header in all POST and PATCH
requests. An idempotency key should be created using the UUIDv5 standard, and is valid for 24
hours - outside of that window Klarna cannot guarantee the idempotency key will be honored with
respect to an action.

This enables Klarna to recognize and ignore repeat requests to ensure an action is not
unintentionally duplicated. In the case of a duplicate attempt, Klarna will respond with the initial
result instead of processing a new one.

Tagging
Integration tagging is a crucial mechanism for ensuring seamless interoperability across various
platforms and Acquiring Partners. This system improves the integration experience by providing
detailed and consistent data to support customer experience, performance tracking, and incident
resolution.

All operations and interactions with Klarna should be associated integration partners to ensure
maximum monitorability and performance. To provide this level of detail, Klarna requires that
partners provide all available information with each interaction.

Data requirements

● Integration metadata: Present in all API/SDK requests sent to Klarna, this includes:
○ Name: Identi�es the speci�c integration pathway used by the merchant.
○ Version: Tracks the version of the integration pathway to ensure data accuracy and

facilitate troubleshooting.
○ Upstream integration metadata: Represents an array of integrations used by a given

merchant within the hosting partner (e.g., a PSP), including name and version details.
This contains the name and version of each of these sub-integrations.

● Platform transaction context: Included in API/SDK requests during payment interactions, this
encompasses:

○ Identifier: The speci�c identi�er of the platform used by the merchant to make the
request, ensuring traceability.

Con�dential and proprietary information 123

○ Platform reference: A unique transaction identi�er assigned by the platform, linking a
shopper across the entire journey.

Release notes

📅 Integration tagging will become available in subsequent releases.

Monitoring and alerting
To ensure compliance with integration best practices and data protection regulations, the Partner
must proactively monitor and share information about deviations from expected behaviors as
outlined in this and/or the Partner-speci�c Solution Scope Document. This includes technical errors
and unusual activities by shoppers or, where relevant, accounts or integrations occurring through
your integration.

To support monitoring, Partners are required to meet the following criteria:

● Immediately escalate any events that disrupt business operations, compromise the integrity
or security of information systems, or impact the availability, con�dentiality, or integrity of
digital assets.

● Address any disruptions or compromises affecting the operation and reputation of the Klarna
payment system.

● Klarna Partners must ensure that all integration approaches must include a speci�c
parameter that uniquely identi�es the speci�c integration being utilized on that request or
transaction. This parameter must be traceable across all integrations to ensure
comprehensive incident handling, behavioral tracking, and account management.

● Follow a release process that validates system functionalities and integration points in the
test environment to detect and resolve issues before they impact system performance or
shopper experience.

● All interactions with Klarna are tagged with the appropriate integration details and versions
as de�ned in Integration tagging

Error handling
When an error occurs on API request, Klarna responds with an error type, an error code, an error
message and a corresponding HTTP status code.

Klarna's APIs use HTTP status codes together with error objects to handle errors. When an API call
fails Klarna will respond with a 4xx or 5xx status code together with a response body containing an
error object with the error code, an array of error messages and a unique error id to be used to
identify the request.

Descriptions for the response �elds:

Parameter Definition

error_id A unique identi�er for the request generated by Klarna. This ID will help you
in investigations in case you need help from our support team.

Con�dential and proprietary information 124

Unset

error_type Type of the error. Different error types are ACCESS_ERROR,
TECHNICAL_ERROR, RESOURCE_ERROR and INPUT_ERROR.

error_code Error code for further categorizing the error.

We recommend using this error code for building your error handling logic.

error_message A human readable error message. The error message is not meant to be
displayable to end-users, but to assist in technical troubleshooting.

doc_url Link to Klarna docs describing how to use the API to avoid the error, or a
more detailed explanation of why the error occurred. To be provided when
available.

Example of API response with an error details:

{
"error_id": "abcd1234�12ab-1234-abcd-abcd12345678",
"error_type": "INPUT_ERROR",
"error_code": "VALIDATION_ERROR",
"errors": [
{
"parameter": "line_items[0].quantity",
"error_message": "Parameter line_items[0].quantity must be greater than or equal to

1",
"doc_url": "https://docs.klarna.com/....."

}
]}

Defined error types, and how to handle them

Error Type Error Code HTTP Status
Code

Definition Handling

NOT_FOUND 404 The requested API
route does not exist.

Verify the API route.

ACCESS_ERROR UNAUTHORIZED 401 The presented
credentials failed
authentication.

Verify the credentials,
check the
authentication
method, and con�rm
the correct endpoint.

RATE_LIMITED 429 The caller was rate
limited due to too many
requests.

See Rate Limiting
page (LINK) for more
details.

RESOURCE_ERRO
R

RESOURCE_NOT_
FOUND

404 The resource was not
found.

Verify the token
provided in the
request path. This

Con�dential and proprietary information 125

issue may also occur
if an attempt is made
to update an expired
shopping session.

RESOURCE_CONF
LICT

409 There was a con�ict in
using the resource.

The transaction
details are con�icting
with the request
details. Might occur
due to concurrent
updates to the
resource.

OPERATION_FOR
BIDDEN

403 The provided
credentials
(authorization) does not
have enough privileges
to perform the
requested operation.

Ensure that the
credentials being
used have the
necessary
permissions for the
operation.

RATE_LIMITED 429 The speci�c resource
was rate limited. For
example creation of
resources are rate
limited, but it is still
possible to run on
already existing
resources.

See Rate Limiting
page (LINK) for more
details.

INPUT_ERROR VALIDATION_ER
ROR

400 One or more input
parameters failed input
validation. For example
exceeding a max value,
or failed pattern
matching, invalid type.

Verify that the
request details and
formats are correct.
See the error
message for more
info.

INVALID_CONTE
NT_TYPE

400 The input does not
conform to the
expected content type
syntax. For example
invalid JSON.

Verify that the
content type is as
expected.

TECHNICAL_ERR
OR

INTERNAL_ERRO
R

500 An unknown error
occurred.

Reach out to your
support contact and
include the error
message and the
error id.

TEMPORARY_UNA
VAILABLE

503 The system is
temporarily unavailable
to process the request.

Reach out to your
support contact and
include the error
message and the
error id.

Con�dential and proprietary information 126

